Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Phenothiazine/dimesitylborane Hybrid Materials as Bibipolar Transport Host of Red Phosphor

Yu-Jen Cheng,^{a,b} Siao-Yin Yu,^c Song-Cheng Lin,^c Jiann T. Lin,^{*a} Li-Yin Chen,^{*c} Dai-Sin Hsiu,^{*b} Yuh Sheng Wen,^a Mandy M. Lee,^a Shih-Sheng Sun^a

^aInstitute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
^bDepartment of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 621, Taiwan
^cDepartment of Photonics, National Sun Yat-sen University, Kaohsiung Taiwan 804

E-mail: jtlin@gate.sinica.edu.tw; ly_chen@mail.nsysu.edu.tw; chedsh@ccu.edu.tw.

Scheme S1 Synthetic routes of CC-MP1 to CC-MP3.

Scheme S2 Synthetic routes of CC-MP4 to CC-MP6.

Scheme S3 Synthetic routes of CC-MP7 and CC-MP8.

Synthesis of materials:

10-Mesityl-10H-phenothiazine (1). 10*H*-phenothiazine (5.00 g, 24.8 mmol), 2-bromo-1,3,5trimethylbenzene (5.44 g, 1.1 eq), sodium *tert*-botoxide (3.58 g, 1.5 eq) and Pd(dba)₂ (0.29 g, 0.2 eq) were loaded in a 100 mL Schlenk flask with condenser. After addition of toluene (50 mL) and tri(*tert*-butyl)phosphine (0.49 M in toluene, 2.02 mL, 0.04 eq), the solution was heated at 110 °C for 8 h. After cooling, the mixture was filtered through Celite and the solvent was removed under vacuum. The residue was extracted with CH₂Cl₂/aqueous NH₄Cl for several times. Collected organic layer was dehydrated by anhydrous MgSO₄. After filtration, the filtrate was pumped dry. The crude product was purified by column chromatography using hexanes as the eluent. Further recrystallization of the crude product from CH₂Cl₂/MeOH provided the desired product as a white powder in 80% yield (6.28 g). ¹H NMR (acetone-*d*₆, 300 MHz): δ 7.16 (s, 2H), 6.92 (dd, 2H, *J* = 7.5; 1.5 Hz), 6.84 (td, 2H, *J* = 7.5; 1.5 Hz), 6.76 (td, 2H, *J* = 7.5; 1.2 Hz), 5.89 (dd, 2H, *J* = 7.5; 1.2 Hz), 2.37 (s, 3H), 2.14 (s, 6H). ¹³C NMR (acetone-*d*₆, 75 MHz): δ 142.8, 139.9, 139.2, 136.3, 131.8, 128.9, 127.8, 123.7, 119.6, 115.4, 21.7, 18.5. HRMS (FAB, m/z): [M]⁺ Calcd for C₂₁H₁₉NS, 317.1238; Found, 317.1234.

3,7-Dibromo-10-mesityl-10H-phenothiazine (2). Compound 1 (3.00 g, 9.45 mmol) was dissolved in CH₂Cl₂ (80 mL) in a 100 mL flask. NBS (3.87 g, 2.3 eq) was then added in dark and the solution was stirred for 3 h at room temperature. The mixture was quenched with aqueous Na₂S₂O₃ and extracted with CH₂Cl₂/aqueous NH₄Cl for several times. The collected organic layer was dehydrated by anhydrous MgSO₄. The solution was filtered and the filtrate was pumped dry. The crude product obtained was recrystallized from CH₂Cl₂/MeOH to provide the desired product as a pale yellow powder in 92% yield (4.13 g). ¹H NMR (acetone-*d*₆, 400 MHz): δ 7.17 (s, 2H), 7.10 (d, 2H, *J* = 2.4 Hz), 7.00 (dd, 2H, *J* = 8.8; 2.4 Hz), 5.81 (d, 2H, *J* = 8.8Hz), 2.37 (s, 3H), 2.14 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 140.4, 139.0, 137.9, 134.2, 130.7, 130.2, 128.7, 120.2, 115.5, 114.4, 21.3, 17.9. HRMS (MALID, m/z): [M] Calcd for C₂₁H₁₇Br₂NS, 472.9443; Found, 472.9432.

10-Mesityl-3,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10H-phenothiazine (**3**). Compound **2** (2.80 g, 5.87 mmol) was dissolved in THF (20 mL) in a 50 mL Schlenk flask under nitrogen and the solution was prechilled to -78 °C. *n*-BuLi (1.6 M in hexane, 7.70 mL, 2.1 eq) was added

dropwise into the solution and the mixture was stirred for 1 h at the same temperature. On completion, isopropyl pinacol borate (3.39 mL, 2.0 eq) was added and slowly warmed to room temperature at stirred for 8 h. The mixture was quenched with de-ionized water and THF was removed by a rotatory evaporator. The residue was extracted with CH₂Cl₂/aqueous NH₄Cl for several times. The collected organic layer was dehydrated by anhydrous MgSO₄. After filtration, the filtrate was pumped dry. The crude product was recrystallized from CH₂Cl₂/hexanes to provide the desired product as a brown powder in 87% yield (2.91 g).

3,7-*Bis*(3-*bromophenyl*)-10-*mesityl*-10*H*-*phenothiazine* (**4**). Compound **3** (2.60 g, 4.57 mmol), 1bromo-3-iodobenzene (5.17 g, 4.0 eq), K₂CO₃ (3.79 g, 6.0 eq), PPh₃ (0.12 g, 0.1 eq) and Pd(PPh₃)4 (0.53 g, 0.1 eq) were loaded in a 100 mL Schlenk flask with a condenser. Toluene (16 mL) and water/ethanol (5.5/2.5 mL) were added, and the solution was heated at 80 °C for 8 h. After removal of the solvent under high vacuum, the residue was extracted with CH₂Cl₂/aqueous NH₄Cl for several times. The collected organic layer was dehydrated by anhydrous MgSO₄. After filtration, the filtrate was pumped dry. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. The desired product was isolated as a yellow powder in 87% yield (2.91 g). ¹H NMR (acetone-*d*₆, 400 MHz): δ 7.76 (t, 2H, *J* = 1.6 Hz), 7.58 (d, 2H, *J* = 8.0Hz), 7.47 (d, 2H, *J* = 8.0 Hz), 7.36 (t, 2H, *J* = 8.0 Hz), 7.31 (d, 2H, *J* = 2.4 Hz), 7.21 (s, 2H), 7.19 (dd, 2H, *J* = 8.4; 2.4 Hz), 5.99 (d, 2H, *J* = 8.4Hz), 2.40 (s, 3H), 2.21(s, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ 143.2, 142.2, 140.2, 138.9, 135.8, 134.9, 132.1, 131.9, 131.2, 130.2, 127.5, 126.3, 126.0, 124.0, 120.3, 115.8, 21.7, 18.5. HRMS (MALID, m/z): [M] Calcd for C₃₃H₂₅Br₂NS, 625.0069; Found, 625.0062.

3-(3-Bromophenyl)-7-(3-(dimesitylboranyl)phenyl)-10-mesityl-10H-phenothiazine (5) and 3,7-bis(3-(dimesityl-boranyl)phenyl)-10-mesityl-10H-phenothiazine (CC-MP1). The compound 4 (8.89 g, 14.2 mmol) was dissolved in THF (50 mL) in a 100 mL Schlenk flask under nitrogen and the solution was prechilled to -78 °C, *n*-BuLi (1.6 M in hexane, 9.30 mL, 1.05 eq) was added dropwise into the solution and stirred for 1 h at the same temperature. On completion, a THF solution (20 mL) of dimesityl boronfluoride (3.80 g, 1.0 eq) was added and the solution was slowly warmed to room temperature and stirred for 8 h. The mixture was guenched with de-ionized water and THF was removed by a rotatory evaporator. The residue was extracted with CH₂Cl₂/aqueous NH₄Cl for several times. The collected organic layer was dehydrated by anhydrous MgSO₄. After filtration, the filtrate was pumped dry. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (1:20 by vol.) as the eluent. The compound **5** was isolated from the first band as a pale yellow powder in 38% yield (4.30 g). ¹H NMR (acetone- d_6 , 500 MHz): δ 7.72-7.78 (m, 2H), 7.64 (s, 1H), 7.58 (d, 1H, J = 7.0 Hz), 7.44-7.49 (m, 2Hz), 7.39 (d, 1H, J = 8.0 Hz), 7.36 (t, 1H, J = 7.0 Hz), 7.44-7.49 (m, 2Hz), 7.39 (d, 1H, J = 7.0 Hz), 7.36 (t, 1H, J = 7.0 Hz), 7.44-7.49 (m, 2Hz), 7.39 (d, 1H, J = 7.0 Hz), 7.36 (t, 1H, J = 7.0 Hz), 7.44-7.49 (m, 2Hz), 7.39 (d, 1H, J = 8.0 Hz), 7.36 (t, 1H, J = 7.0 Hz), 7.44-7.49 (m, 2Hz), 7.39 (d, 1H, J = 8.0 Hz), 7.36 (t, 1H, J = 7.0 Hz), 7.44-7.49 (m, 2Hz), 7.39 (d, 1H, J = 8.0 Hz), 7.36 (t, 1H, J = 7.0 Hz), 7.44-7.49 (m, 2Hz), 7.39 (d, 1H, J = 8.0 Hz), 7.36 (t, 1H, J = 7.0 Hz), 7.44-7.49 (m, 2Hz), 7.39 (d, 1H, J = 8.0 Hz), 7.36 (t, 1H, J = 8.0 Hz), 8.36 8.0 Hz), 7.28 (d, 1H, J = 2.0 Hz), 7.15-7.20 (m, 4H), 7.05 (dd, 1H, J = 8.5; 2.5 Hz), 6.84 (s, 4H), 5.98 (d, 1H, J = 8.5 Hz), 5.95 (d, 1H, J = 8.5 Hz), 2.34 (s, 3H), 2.28 (s, 6H), 2.18 (s, 6H), 2.01 (s, 6H), 2 12H). ¹³C NMR (acetone- d_6 , 125 MHz): δ 148.0, 143.2, 143.0, 142.3, 141.9, 141.7, 140.6, 140.2, 140.1, 138.9, 136.7, 136.0, 135.8, 134.8, 134.7, 132.1, 131.8, 131.3, 131.2, 130.1, 130.1, 129.6, 127.4, 127.3, 126.3, 126.0, 125.9, 123.9, 120.1, 120.0, 115.9, 115.7, 24.2, 21.8, 21.7, 18.4. HRMS (FAB, m/z): [M]⁺ Calcd for C₅₁H₄₇BBrNS, 795.2706; Found, 795.2718. Using CH₂Cl₂/hexanes (1:10 by vol.) as the eluent, the compound CC-MP1 was isolated from the second band and further

recrystallization from CH₂Cl₂/MeOH provided the desired product as a yellow powder in 25% yield (3.42 g). ¹H NMR (acetone- d_6 , 400 MHz): δ 7.73 (d, 2H, J = 7.6 Hz), 7.65 (s, 2H), 7.46 (t, 2H, J = 7.6 Hz), 7.39 (d, 2H, J = 7.6 Hz), 7.17 (s, 2H), 7.14 (d, 2H, J = 2.0 Hz), 7.03 (dd, 2H, J = 8.8; 2.0 Hz), 6.84 (s, 8H), 5.93 (d, 2H, J = 8.8 Hz), 2.37 (s, 3H), 2.28 (s, 12H), 2.16 (s, 6H), 2.01 (s, 24H). ¹³C NMR (acetone- d_6 , 100 MHz): δ 148.2, 143.1, 142.0, 141.9, 140.7, 140.2, 140.1, 139.1, 136.6, 136.1, 136.0, 134.9, 131.9, 131.3, 130.2, 129.7, 127.4, 125.9, 120.1, 115.9, 24.3, 21.9, 21.7, 18.5. HRMS (MALID, m/z): [M] Calcd for C₆₉H₆₉B₂NS, 965.5352; Found, 965.5377. Anal. Calcd for C₆₉H₆₉B₂NS: C, 85.79; H, 7.20; N, 1.45; Found: C, 85.23; H, 7.17; N, 1.40.

3-(3-(10H-Phenothiazin-10-yl)phenyl)-7-(3-(dimesitylboranyl)-phenyl)-10-mesityl-10H-pheno-

thiazine (**CC-MP2**). A procedure similar to that used for **1** was followed except that compound **5** (4.00 g, 5.02 mmol) was usedand the solution was heated at 120 °C for 8 h. The crude product was purified by aluminum gel column chromatography using CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. Further recrystallization of the crude product from CH₂Cl₂/MeOH provided the desired product as a yellow powder in 57% yield (2.62 g). ¹H NMR (acetone-*d*₆, 500 MHz): δ 7.50-7.70 (m, 5H), 7.34 (t, 1H, *J* = 7.5 Hz), 7.20-7.30 (m, 2H), 7.22 (d, 1H, *J* = 7.5 Hz), 7.12 (d, 1H, *J* = 8.5 Hz), 7.00-7.10 (m, 3H), 6.90-6.95 (m, 3H), 6.78 (t, 2H), 6.70-6.75 (m, 6H), 6.17 (d, 2H, *J* = 8.0 Hz), 5.85 (d, 1H, *J* = 8.5 Hz), 5.81 (d, 1H, *J* = 8.5 Hz), 2.26 (s, 3H), 2.15 (s, 6H), 2.04 (s, 6H), 1.88 (s, 12H). ¹³C NMR (acetone-*d*₆, 125 MHz): δ 147.8, 145.4, 143.4, 142.8, 142.0, 141.7, 141.5, 140.4, 140.0, 139.9, 138.7, 136.4, 135.9, 135.7, 134.9, 134.7, 132.7, 131.7, 131.1, 130.2, 130.0, 129.5, 129.1, 128.4, 127.8, 127.2, 127.1, 126.9, 125.8, 125.7, 123.9, 121.3, 112.0, 117.5, 115.7, 115.6, 24.1, 21.7, 21.6, 18.3. HRMS (MALID, m/z): [M] Calcd for C₆₃H₅₅BN₂S₂, 914.3904; Found, 914.3910. Anal. Calcd for C₆₃H₅₅BN₂S₂: C, 82.69; H, 6.06; N, 3.06; Found: C, 82.45; H, 6.09; N, 3.09.

10,10'-((10-Mesityl-10H-phenothiazine-3,7-diyl)bis(3,1-phenylene))bis-(10H-phenothiazine) (CC-MP3). A procedure similar to that used for **1** was followed except that compound **4** (5.00 g, 7.97 mmol) was used and the solution was heated at 120 °C for 8 h. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (2:8 by vol.) as the eluent. The crude product was recrystallized from CH₂Cl₂/MeOH to provide the desired product as a yellow powder in 91% yield (6.30 g). ¹H NMR (acetone-*d*₆, 400 MHz): δ 7.78 (dm, 2H, *J* = 7.6 Hz), 7.71 (t, 2H, *J* = 7.6 Hz), 7.66 (sm, 2H), 7.40 (d, 2H, *J* = 2.0 Hz), 7.34 (dm, 2H, *J* = 7.6 Hz), 7.28 (dd, 2H, *J* = 8.8; 2.0 Hz), 7.20 (s, 2H), 7.04 (dd, 4H, *J* = 7.6; 2.0 Hz), 6.91 (td, 4H, *J* = 7.6; 2.0 Hz), 6.85 (td, 4H, *J* = 7.6; 1.2 Hz), 6.31 (dd, 2H, *J* = 8.6; 1.2 Hz), 6.00 (d, 1H, *J* = 8.8 Hz), 2.39 (s, 3H), 2.20 (s, 6H). ¹³C NMR (acetone-*d*₆, 100 MHz): δ 145.7, 143.7, 143.2, 142.2, 140.3, 139.0, 136.0, 135.3, 132.9, 132.0, 130.4, 129.4, 128.6, 128.1, 127.4, 127.2, 126.0, 124.2, 121.8, 120.4, 118.0, 116.0, 21.8, 18.5. HRMS (MALID, m/z): [M] Calcd for C₅₇H₄₁N₃S₃, 863.2457; Found, 863.2460. Anal. Calcd for C₅₇H₄₁N₃S₃: C, 79.22; H,4.78; N, 4.86; Found: C, 79.18; H,4.71; N, 4.90.

10-(3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-10H-pheno-thiazine (6). A procedure similar to that used for **3** was followed except that 10-(3-bromophenyl)-10H-pheno-thiazine (1.00 g, 2.82 mmol) was used and the solution was stirred for 8 h. The crude product obtained was

recrystallized from CH₂Cl₂/hexanes to provide the desired product as a white powder in 76% yield (0.86 g).

3-(3-(10H-Phenothiazin-10-yl)phenyl)-7-bromo-10-mesityl-10H-pheno-thiazine (**7**). A procedure similar to that used for **4** was followed. A mixture of ompound **6** (1.63 g, 4.06 mmol), the compound **2** (2.5 eq), K₂CO₃ (3.0 eq), PPh₃ (0.05 eq) and Pd(PPh₃)₄ (0.05 eq), toluene (14 mL) and water/ethanol (2.5/1.0 mL) was heated at 80 °C for 8 h. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. Further recrystallization of the crude product from CH₂Cl₂/MeOH provided the desired product as a yellow powder in 64% yield (1.73 g). ¹H NMR (acetone-*d*₆, 400 MHz): δ 7.77 (dm, 1H, *J* = 7.6 Hz), 7.71 (t, 1H, *J* = 7.6 Hz), 7.66 (t, 1H, *J* = 1.6 Hz), 7.39 (sd, 1H, *J* = 2.0 Hz), 7.35 (dm, 1H, *J* = 7.6 Hz), 7.29 (dd, 1H, *J* = 8.8; 2.0 Hz), 7.18 (s, 2H), 7.01 (d, 1H, *J* = 2.4 Hz), 7.04 (dd, 2H, *J* = 8.0; 1.6), 6.99 (dd, 1H, *J* = 8.8; 2.4 Hz), 6.91 (td, 2H, *J* = 8.0; 1.6 Hz), 6.85 (td, 2H, *J* = 8.0; 1.2 Hz), 6.31 (dm, 2H, *J* = 8.0 Hz), 6.00 (d, 1H, *J* = 8.8 Hz), 5.81 (d, 1H, *J* = 8.8 Hz), 2.38 (s, 3H), 2.17 (s, 6H). ¹³C NMR (acetone-*d*₆, 100 MHz): δ 145.7, 143.6, 143.3, 142.1, 142.0, 140.4, 139.0, 135.8, 135.5, 132.9, 132.0, 131.6, 130.5, 129.8, 129.4, 128.6, 128.1, 127.7, 127.2, 126.1, 124.2, 122.2, 268.0950; Found, 668.0957.

3-(3-(10H-Phenothiazin-10-yl)phenyl)-7-(dimesitylboranyl)-10-mesityl-10H-phenothiazine (CC-MP4). A procedure similar to that used for CC-MP1 was followed. A mixture of compound 7 (1.25 g, 1.86 mmol), *n*-BuLi (1.05 eq) in THF (6 mL) and dimesityl boronfluoride (1.0 eq) in THF (6 mL) was stirred for 8 h. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. Further recrystallization of the crude product from EA/hexanes (30/20 mL each gram compound) provided the desired product as a yellow crystallization in 32% yield (0.75 g). ¹H NMR (DMSO- d_6 , 400 MHz): δ 7.75 (d, 1H, J = 7.6 Hz), 7.67 (t, 1H, J = 7.6 Hz), 7.63 (s, 1H), 7.38 (s, 1H), 7.34 (d, 1H, J = 7.6 Hz), 7.28 (dm, 1H, J = 8.8;1.6 Hz), 7.18 (s, 2H), 7.07 (dm, 2H, J = 7.6 Hz), 6.93 (t, 2H, J = 7.6 Hz), 6.80-6.90 (m, 4H), 6.79 (s, 4H), 6.21 (d, 2H, J = 7.6 Hz), 5.89 (d, 1H, J = 8.8 Hz), 5.85 (d, 1H, J = 8.4 Hz), 2.34 (s, 3H), 2.23 (s, 6H), 2.10 (s, 6H), 1.95 (s, 12H). ¹³C NMR (THF-*d*₈, 125 MHz): δ 145.4, 145.3, 143.4, 142.7, 142.3, 141.3, 141.1, 140.5, 139.7, 139.0, 138.5, 138.4, 135.7, 135.6, 135.5, 132.0, 131.3, 130.0, 129.2, 129.0, 127.7, 127.4, 126.5, 125.6, 123.3, 121.3, 120.8, 118.4, 117.1, 115.7, 114.3, 23.8, 21.3, 21.2, 17.9. HRMS (MALID, m/z): [M] Calcd for C₅₇H₅₁BN₂S₂, 838.3581; Found, 838.3592. Anal. Calcd for C₅₇H₅₁BN₂S₂: C, 81.60; H, 6.13; N, 3.34; Found: C, 81.83; H, 6.28; N, 3.15.

3-Bromo-10-mesityl-10H-phenothiazine (8). Compound 1 (3.00 g, 9.45 mmol) was dissolved with CH₂Cl₂ (80 mL) in a 100 mL flask and prechilled to 0 °C. To the solution was added a DMF solution (20 mL) of NBS (1.68 g, 9.45 mmol) in the dark. The solution was slowly warmed to room temperature and stirred for 3 h. The mixture was quenched with aqueous Na₂S₂O₃ and extracted with CH₂Cl₂/aqueous NH₄Cl for several times. The collected organic layer was dehydrated by anhydrous MgSO₄. After filtration, the filtrate was pumped dry. The crude product was purified by column chromatography using hexanes as the eluent. Further recrystallization of the crude product from CH₂Cl₂/MeOH provided the desired product as a white powder in 89% yield (3.32 g). ¹H NMR

(acetone- d_6 , 400 MHz): δ 7.17 (s, 2H), 7.07 (d, 1H, J = 1.6 Hz), 6.97 (dd, 1H, J = 8.8; 1.6 Hz), 6.94 (d, 1H, J = 7.6 Hz), 6.86 (t, 1H, J = 7.6 Hz), 6.79 (t, 1H, J = 7.6 Hz), 5.89 (d, 1H, J = 7.6 Hz), 5.79 (d, 1H, J = 8.8 Hz), 2.37 (s, 3H), 2.14 (s, 6H). ¹³C NMR (acetone- d_6 , 100 MHz): δ 142.4, 142.3, 140.2, 139.1, 135.9, 132.0, 131.5, 129.7, 129.2, 127.9, 124.2, 122.3, 118.9, 116.9, 115.7, 115.0, 21.8, 18.5. HRMS (MALID, m/z): [M] Calcd for C₂₁H₁₈BrNS, 395.0338; Found, 395.0329.

10-Mesityl-10H-phenothiazin-3-ylboronic acid (9). A procedure similar to that used for 3 was followed except that compound 8 (2.89 g, 7.29 mmol) was used and the solution was stirred for 8 h. The extracted filtrate was pumped dry and without further purification to provide the desired product as a yellow powder in 100% yield (2.63 g).

3-(3-Bromophenyl)-10-mesityl-10H-phenothiazine (**10**). A procedure similar to that used for **4** was followed except that compound **9** (2.63 g, 7.29 mmol) was used and the solution was heated at 80 °C for 8 h. The crude product was purified by column chromatography using hexanes as the eluent. The desired product was isolated as a yellow powder in 74% yield (2.56 g). ¹H NMR (acetone-*d*₆, 400 MHz): δ 7.74 (t, 1H, J = 2.0 Hz), 7.57 (d, 1H, J = 8.0 Hz), 7.47 (d, 1H, J = 8.0 Hz), 7.35 (t, 1H, J = 8.0 Hz), 7.27 (d, 1H, J = 2.0 Hz), 7.14-7.20 (m, 3H), 6.96 (dd, 1H, J = 7.6; 1.2 Hz), 6.83 (td, 1H, J = 7.6; 1.2 Hz), 6.76 (td, 1H, J = 7.6; 1.2 Hz), 5.97 (d, 1H, J = 8.4 Hz), 5.92 (dd, 1H, J = 7.6; 1.2 Hz), 2.39 (s, 3H), 2.18 (s, 6H). ¹³C NMR (acetone-*d*₆, 125 MHz): δ 142.8, 142.2, 141.9, 139.6, 138.6, 135.5, 134.2, 131.7, 131.4, 130.7, 129.7, 128.5, 127.3, 126.9, 125.8, 125.5, 123.6, 123.5, 120.0, 118.9, 115.2, 115.1, 21.3, 18.0. HRMS (MALID, m/z): [M] Calcd for C₂₇H₂₂BrNS, 471.0651; Found, 471.0629.

3-Bromo-7-(3-bromophenyl)-10-mesityl-10H-phenothiazine (**11**). A procedure similar to that used for **2** was followed except that compound **10** (2.00 g, 4.23 mmol) was used and the solution was stirred for 3 h. The crude product obtained was recrystallized from CH₂Cl₂/MeOH to provide the desired product as a pale yellow powder in 87% yield (2.03 g). ¹H NMR (acetone-*d*₆, 400 MHz): δ 7.75 (s, 1H), 7.58 (d, 1H, *J* = 8.0 Hz), 7.47 (d, 1H, *J* = 8.0 Hz), 7.36 (t, 1H, *J* = 8.0 Hz), 7.29 (d, 1H, *J* = 2.0 Hz), 7.15-7.25 (m, 3H), 7.12 (d, 1H, *J* = 2.0 Hz), 7.00 (dd, 1H, *J* = 8.8; 2.0 Hz), 5.98 (d, 1H, *J* = 8.8 Hz), 5.82 (d, 1H, *J* = 8.8 Hz), 2.38 (s, 3H), 2.18 (s, 6H). ¹³C NMR (acetone-*d*₆, 125 MHz): δ 142.9, 142.0, 141.7, 140.2, 138.7, 135.4, 134.9, 132.0, 131.8, 131.4, 131.2, 130.1, 129.6, 127.5, 126.2, 126.0, 123.8, 121.8, 119.6, 116.8, 115.8, 115.1, 21.6, 18.3. HRMS (MALID, m/z): [M] Calcd for C₂₇H₂₁Br₂NS, 548.9756; Found, 548.9746.

3-(*Dimesitylboryl*)-7-(3-(*dimesitylboryl*)phenyl)-10-mesityl-10H-pheno-thiazine (**CC-MP5**). A procedure similar to that used for **CC-MP1** was followed ecept that compound **11** (1.03 g, 1.86 mmol) was used and the solution was stirred for 8 h. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. The desired product was obtained as a yellow powder in 39% yield (0.64 g). ¹H NMR (acetone- d_6 , 400 MHz): δ 7.72 (dm, 1H, J = 7.6 Hz), 7.63 (s, 1H), 7.46 (t, 1H, J = 7.6 Hz), 7.39 (d, 1H, J = 7.6 Hz), 7.16 (s, 2H), 7.11 (d, 1H, J = 2.0 Hz), 7.04 (dd, 1H, J = 8.4; 2.0 Hz), 7.00 (d, 1H, J = 1.2 Hz), 6.96 (dd, 1H, J = 8.4; 1.2 Hz), 6.83 (s, 4H), 6.81 (s, 4H), 5.96 (d, 1H, J = 8.4 Hz), 5.93 (d, 1H, J = 8.4 Hz), 2.36 (s, 3H), 2.27 (s, 6H), 2.26

(s, 6H) , 2.16 (s, 6H), 2.02 (s, 12H), 1.99 (s, 12H). ¹³C NMR (THF- d_8 , 125 MHz): δ 147.4, 145.6, 142.5, 142.3, 141.4, 141.3, 140.6, 140.3, 139.6, 139.5, 139.0, 138.6, 138.4, 137.0, 135.8, 135.7, 135.4, 134.5, 131.2, 130.8, 129.4, 129.1, 129.0, 126.6, 125.5, 120.5, 118.3, 115.7, 114.2, 23.8, 21.4, 21.3, 21.2, 17.9 . HRMS (MALID, m/z): [M] Calcd for C₆₃H₆₅B₂NS, 888.5060; Found, 888.5039. Anal. Calcd for C₆₃H₆₅B₂NS: C, 85.03; H, 7.36; N, 1.57; Found: C, 85.10; H, 7.38; N, 1.70.

7-*Bromo-10-mesityl-10H-3,10'-biphenothiazine* (12). A procedure similar to that used for 1 was followedexcept that compound 2 (2.0 eq) was used and the solution was heated at 80 °C for 8 h. The crude product was purified by aluminum column chromatography using hexanes as the eluent. Further recrystallization of the crude product from CH₂Cl₂/MeOH provided the desired product as a yellow-white powder in 60% yield (4.10 g). ¹H NMR (acetone-*d*₆, 300 MHz): δ 7.21 (s, 2H), 7.14 (d, 1H, *J* = 2.4 Hz), 6.97-7.10 (m, 4H), 6.90-6.96 (m, 3H), 6.84 (t, 2H, *J* = 8.0 Hz), 6.36 (d, 2H, *J* = 8.0 Hz), 6.15 (d, 1H, *J* = 8.8 Hz), 5.88 (d, 1H, *J* = 8.8 Hz), 2.38 (s, 3H), 2.24 (s, 6H). ¹³C NMR (acetone-*d*₆, 75 MHz): δ 145.6, 142.3, 142.0, 140.5, 139.0, 136.9, 135.7, 132.1, 131.8, 131.6, 130.0, 129.9, 128.6, 128.0, 124.1, 121.8, 121.6, 121.5, 117.6, 117.4, 117.3, 115.6, 21.9, 18.7. HRMS (FAB, m/z): [M]⁺ Calcd for C₃₃H₂₅BrN₂S₂, 592.0643; Found, 592.0638.

10-Mesityl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10H-3,10'-biphenothiazine (13). Compound 12 (2.88 g, 4.85 mmol), bis(pinacolato)diboron (2.46 g, 9.70 mmol), potassium acetate (2.86 g, 29.1 mmol) and Pd(dppf)₂Cl₂ (0.12 g, 0.146 mmol) were loaded into a 50 mL Schlenk flask with condenser. The solution was added 1,4-dioxane (10 mL) and heated at 80 °C for 8 h. After removal of the solvent under high vacuum, the residue was extracted with CH₂Cl₂/aqueous NH₄Cl for several times. The collected organic layer was dehydrated by anhydrous MgSO₄. After filtration, the filtrate was pumped dry. The crude product obtained was recrystallized from CH₂Cl₂/MeOH to provide the desired product as a pale brown powder in 94% yield (2.93 g).

7-(3-(*Dimesitylboranyl*)*phenyl*)-10-*mesityl*-10H-3,10'-*bi*-*phenothiazine* (**CC-MP6**). A procedure similar to that used for **4** was followed except that compound **13** (2.80 g, 4.37 mmol)was used and the solution was heated at 90 °C for 8 h. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. Further recrystallization of the crude product from CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. Further recrystallization of the crude product from CH₂Cl₂/MeOH provided the desired product as a yellow-white powder in 70% yield (2.57 g). ¹H NMR (acetone-*d*₆, 400 MHz): δ 7.76 (d, 1H, *J* = 7.6 Hz), 7.67 (s, 1H), 7.48 (t, 1H, *J* = 7.6 Hz), 7.40 (d, 1H, *J* = 7.6 Hz), 7.21 (s, 2H), 7.19 (d, 1H, *J* = 2.0 Hz), 7.09 (dd, 1H, *J* = 8.4; 2.0 Hz), 7.03 (d, 1H, *J* = 2.4 Hz), 7.00 (dm, 2H, *J* = 8.4 Hz), 6.89-6.97 (m, 3H), 6.80-6.87 (m, 6H), 6.36 (d, 2H, *J* = 8.4 Hz), 6.15 (d, 1H, *J* = 8.8 Hz), 6.10 (d, 1H, *J* = 8.4 Hz), 2.39 (s, 3H), 2.27 (s, 6H), 2.24 (s, 6H), 2.01 (s, 12H). ¹³C NMR (THF-*d*₈, 125 MHz): δ 147.5, 145.3, 142.6, 142.0, 141.5, 141.3, 140.3, 139.6, 139.5, 138.7, 136.6, 136.0, 135.8, 135.6, 134.5, 131.4, 130.8, 130.7, 129.6, 129.4, 129.1, 127.8, 127.3, 126.9, 125.6, 123.2, 121.9, 120.9, 119.5, 116.7, 116.3, 115.4, 23.8, 21.4, 21.3, 18.1. HRMS (EI, m/z): [M]⁺ Calcd for C₅₇H₅₁BN₂S₂, 838.3587; Found, 838.3584. Anal. Calcd for C₅₇H₅₁BN₂S₂: C, 81.60; H, 6.13; N, 3.34; Found: C, 81.47; H, 6.09; N, 3.39.

10-(3-Bromo-5-(dimesitylboranyl)phenyl)-10H-phenothiazine (14). A procedure similar to that used for CC-MP1 was followed except that 10-(3,5-dibromophenyl)-10H-phenothiazine (1.00 g, 2.31 mmol) was used and the solution was stirred for 8 h. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. The desired product was isolated as a yellow powder in 45% yield (0.63 g). ¹H NMR (acetone- d_6 , 400 MHz): δ 7.80 (s, 1H), 7.66 (s, 1H), 7.36 (s, 1H), 7.09 (d, 2H, J = 7.6 Hz), 6.99 (t, 2H, J = 7.6 Hz), 6.91 (t, 2H, J = 7.6 Hz), 6.85 (s, 4H), 6.36 (d, 2H, J = 7.6 Hz), 2.26 (s, 3H), 2.04 (s, 12H). ¹³C NMR (acetone- d_6 , 100 MHz): δ 144.8, 144.4, 142.0, 141.0, 138.3, 136.8, 136.2, 129.8, 129.7, 128.6, 128.3, 128.0, 125.1, 124.7, 122.9, 118.6, 24.2, 21.7. HRMS (FAB, m/z): [M+H]⁺ Calcd for C₃₆H₃₃BBrNS, 601.1610; Found, 601.1613. 3-(3-(Dimesitylboranyl)-5-(10H-phenothiazin-10-yl)phenyl)-10-mesityl-10H-phenothiazine (CC-MP7). A procedure similar to that used for 4 was followed except that compound 9 (1.98 g, 5.48 mmol) and compound 14 (1.0 eq) were used and the solution was heated at 110 °C for 8 h. The crude product was purified by column chromatography using CH₂Cl₂/hexanes (1:9 by vol.) as the eluent. Further recrystallization of the crude product from CH₂Cl₂/MeOH provided the desired product as a yellow powder in 56% yield (2.57 g). ¹H NMR (acetone- d_6 , 400 MHz): δ 7.82 (d, 1H, J = 1.6 Hz), 7.81 (s, 1H), 7.31 (s, 1H), 7.26 (d, 1H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 6.98 (dm, 2H, J = 1.6 Hz), 7.10-7.15 (m, 3H), 7.10-7.15 (m, 3H), 7.10-7.15 (m, 3H) 8.0 Hz), 6.77-6.90 (m, 10H), 6.74 (t, 1H, J = 8.0 Hz), 6.25 (d, 2H, J = 8.0 Hz), 5.91 (d, 1H, J = 8.8 Hz), 5.86 (d, 1H, J = 8.0 Hz), 2.34 (s, 3H), 2.22 (s, 6H), 2.11 (s, 6H), 2.04 (s, 12H). ¹³C NMR (acetone-d₆, 100 MHz): δ 151.9, 145.6, 143.7, 142.9, 142.8, 142.7, 142.4, 142.0, 140.7, 140.1, 139.1, 137.3, 136.1, 135.0, 134.2, 133.5, 131.9, 129.9, 129.0, 128.5, 128.1, 127.8, 127.5, 126.0, 124.1, 124.0, 121.2, 120.6, 119.3, 117.5, 115.8, 115.6, 24.4, 21.9, 21.8, 18.5. HRMS (EI, m/z): [M]⁺ Calcd for C57H51BN2S2, 838.3587; Found, 838.3577. Anal. Calcd for C57H51BN2S2: C, 81.60; H, 6.13; N, 3.34; Found: C, 81.66; H, 6.09; N, 3.35.

3-(3,5-Bis(dimesitylboranyl)phenyl)-10-mesityl-10H-phenothiazine (**CC-MP8**). A procedure similar to that used for **4** was followed except that compound **9** (2.38 g, 6.58 mmol) was used and the solution was heated at 110 °C for 8 h. The crude product was purified by column chromatography using CH2Cl2/hexanes (1:9 by vol.) as the eluent. Further recrystallization of the crude produt from CH2Cl2/MeOH provided the desired product as a yellow powder in 45% yield (2.65 g). ¹H NMR (acetone-*d*₆, 400 MHz): δ 7.74 (sd, 2H, *J* = 1.2 Hz), 7.55 (d, 1H, *J* = 1.2 Hz), 7.14 (s, 2H), 7.00 (sd, 1H, *J* = 2.0 Hz), 6.88-6.93 (m, 2H), 6.83 (tm, 1H, *J* = 7.6 ;1.6 Hz), 6.72-6.79 (m, 9H), 5.86-5.89 (m, 2H), 2.36 (s, 3H), 2.24 (s, 12H), 2.12 (s, 6H), 1.98 (s, 24H). ¹³C NMR (acetone-*d*₆, 100 MHz): δ 148.7, 143.2, 142.6, 142.5, 142.3, 142.0, 140.6, 140.4, 140.0, 139.1, 138.1, 136.5, 136.1, 131.8, 129.7, 129.0, 127.8, 127.5, 125.9, 123.9, 120.4, 119.2, 115.9, 115.5, 24.3, 21.9, 21.7, 18.5. HRMS (FAB, m/z): [M]⁺ Calcd for C₆₃H₆₅B₂NS, 889.5024; Found, 889.5005. Anal. Calcd for C₆₃H₆₅B₂NS: C, 85.03; H, 7.36; N, 1.57; Found: C, 85.07; H, 7.45; N, 1.67.

Fig. S1 TGA curves for CC-MP compounds.

Fig. S2 DSC curves for CC-MP compounds (after heated at 110 °C for 1h) at a scan rate of 10 °C/min.

Fig. S3 PL spectra of CC-MP3 and CC-MP8 in different solvents.

Fig. S4 Cyclic voltammograms measurements in THF.

Fig. S5 Low-energy photoelectron spectra of all compounds.

Fig. S6 Frontier orbitals of the compounds.

Fig. S7 ORTEP plots of CC-MP7 (a) and CC-MP8 (b).

Fig. S8 Packing of CC-MP7 molecules in the crystal.

Fig. S9 Packing of CC-MP8 molecules in the crystal.

Fig. S10 The representative TOF transients for electrons (left) and holes (right) of **CC-MP1** (a), **CC-MP2** (b), **CC-MP3** (c), **CC-MP4** (d), **CC-MP5** (e), **CC-MP6** (f) , **CC-MP7** (g) , and **CC-MP8** (h).

Fig. S11 Film PL spectra of selected CC-MP dyes and absorption spectrum of Ir(pq)₂(acac).

Fig. S12 J–V–L (a), CE–L–PE (b), EQE-L (c) plots of the OLED device.

dye	State	excitation ^b	eV	f	dye	State	excitation ^b	eV	f
CC- MP1	S ₁	H → L (93%)	2.74	0.017		S ₁	H1 → L (30%)	2.86	0.014
		$H \rightarrow L1$ (6%)					$H \rightarrow L (69\%)$		
	S ₂	$H \rightarrow L (6\%)$	2.76	0.003	CC-	S ₂	H1 → L (69%)	3.06	0.000
		H → L1 (93%)			MP2		$H \rightarrow L (30\%)$		
	S ₃	H → L2 (94%)	3.19	0.253		S₃	H1 → L1 (26%)	3.12	0.290
							$H \rightarrow L1$ (68%)		
	S1	H2 → L (80%)	3.12	0.324		S ₁	H1 \rightarrow L (87%)	2.79	0.299
CC-		H1 \rightarrow L (5%)					$H \rightarrow L (9\%)$		
		$H \rightarrow L (10\%)$				S ₂	H1 \rightarrow L (9%)	3.01	0.001
	S ₂	H2 \rightarrow L (5%)	3.22	0.001	~~~		$H \rightarrow L (85\%)$		
		H1 → L (80%)			MD4		$H \rightarrow L1 (5\%)$		
IVIFS		H1 → L1 (13%)			IVIF4	S₃	$H \rightarrow L (6\%)$	3.40	0.002
	S ₃	H2 \rightarrow L (9%)	3.24	0.003			H → L1 (84%)		
		$H \rightarrow L (77\%)$							
		${ m H} ightarrow$ L1 (10%)							
	S_1	H → L1 (31%)	2.79	0.278		S_1	H1 \rightarrow L (60%)	2.92	0.010
		$H \rightarrow L (66\%)$					$H \rightarrow L (40\%)$		
CC-	S ₂	$H \rightarrow L (68\%)$	2.87	0.036	CC-	S ₂	H1 → L (39%)	2.99	0.003
MP5		$H \rightarrow L1 (31\%)$			MP6		$H \rightarrow L (60\%)$		
	S ₃	H3 → L (93%)	3.56	0.077		S ₃	H1 → L1 (76%)	3.32	0.135
							$ extsf{H} ightarrow$ L1 (17%)		
CC- MP7	S_1	H1 \rightarrow L (5%)	2.49	0.000		S_1	H → L (99%)	2.70	0.008
		$H \rightarrow L (94\%)$				S ₂	${ m H} ightarrow$ L1 (99%)	2.96	0.037
	S ₂	H1 → L (95%)	2.67	0.035		S ₃	H → L2 (89%)	3.38	0.098
		$H \rightarrow L (5\%)$			MD8				
	S ₃	H1 \rightarrow L1 (61%)	3.25	0.155	IVIFO				
		H1 → L2 (5%)							
		$H \rightarrow L1 (29\%)$							

Table S1 Calculated lower-lying transitions of the dyes.^a

^aResults are based on gas-phase TD-DFT calculation.

 ${}^{b}H = HOMO$, L = LUMO, H1 = The next highest occupied molecular orbital, or HOMO – 1, Hn = HOMO – n, Ln = LUMO + n. In parentheses is the population of a pair of MO excitations.

CC-MP4					
S(1)-C(6)	1.762(2)	S(2)-C(25)	1.745(7)	S(1)-C(7)	1.762(2)
S(2)-C(26)	1.759(6)	N(1)-C(1)	1.398(3)	N(2)-C(15)	1.426(5)
N(1)-C(12)	1.411(3)	N(2)-C(20)	1.349(8)	N(1)-C(32)	1.445(3)
N(2)-C(31)	1.449(8)	B(1)-C(4)	1.557(3)	B(1)-C(41)	1.582(4)
B(1)-C(50)	1.578(4)	C(9)-C(13)	1.485(3)		
C(1)-N(1)-C(12)	123.3(2)	C(15)-N(2)-C(20)	115.7(5)	C(1)-N(1)-C(32)	119.7(2)
C(15)-N(2)-C(31)	116.0(4)	C(12)-N(1)-C(32)	117.0(2)	C(20)-N(2)-C(31)	123.6(5)
N(1)-C(1)-C(2)	120.5(2)	N(2)-C(15)-C(14)	120.9(3)	N(1)-C(1)-C(6)	121.8(2)
N(2)-C(15)-C(16)	118.0(3)	N(1)-C(12)-C(7)	122.0(2)	N(2)-C(20)-C(21)	123.0(5)
N(1)-C(12)-C(11)	120.7(2)	N(2)-C(20)-C(25)	119.4(6)	N(1)-C(32)-C(33)	116.8(2)
N(2)-C(31)-C(26)	119.0(5)	N(1)-C(32)-C(37)	121.9(2)	N(2)-C(31)-C(30)	123.0(5)
S(1)-C(6)-C(1)	121.8(2)	S(2)-C(25)-C(20)	121.2(5)	S(1)-C(7)-C(8)	117.2(2)
S(2)-C(25)-C(24)	119.0(4)	S(1)-C(6)-C(5)	117.4(2)	S(2)-C(26)-C(27)	117.6(4)

Table S2 Selected bond distances (Å) and angles (°) of the compounds.

S(1)-C(7)-C(12)	1214(2)	S(2)-C(26)-C(31)	120 5(5)	C(4)-B(1)-C(41)	117 5(2)
C(4)-B(1)-C(50)	121.1(2) 118.9(2)	C(41)-B(1)-C(50)	123.5(3) 123.6(2)	B(1)-C(4)-C(3)	123 6(2)
B(1)-C(4)-C(5)	119.9(2)	B(1)-C(41)-C(42)	121.7(2)	B(1)-C(41)-C(46)	119.9(2)
B(1)-C(50)-C(51)	119.3(2)	B(1)-C(50)-C(55)	122.8(2)	C(13)-C(9)-C(8)	120.3(2)
C(13)-C(9)-C(10)	122.2(2)	C(9)-C(13)-C(14)	120.5(3)	C(9)-C(13)-C(18)	121.5(2)
	122.2(2)		120.0(0)		121.5(2)
CC-MP7					
S(1)-C(12)	1.753 (2)	S(2)-C(24)	1.759(2)	S(1)-C(14)	1.754(2)
S(2)-C(30)	1.755(2)	N(1)-C(2)	1.444(2)	N(2)-C(19)	1.402(2)
N(1)-C(7)	1.416(2)	N(2)-C(25)	1.404(2)	N(1)-C(13)	1.418(2)
N(2)-C(31)	1.442(2)	B(1)-C(4)	1.570(2)	B(1)-C(40)	1.571(2)
B(1)-C(49)	1.567(2)	C(6)-C(22)	1.482(2)		
C(6)-N(1)-C(7)	121.9(2)	C(30)-N(2)-C(19)	123.83(19)	C(6)-N(1)-C(13)	116.7(2)
C(30)-N(2)-C(17)	117.4(2)	C(7)-N(1)-C(13)	116.2(2)	C(19)-N(2)-C(17)	118.13(19)
N(1)-C(2)-C(1)	118.3(1)	N(2)-C(31)-C(32)	118.8(2)	N(1)-C(2)-C(3)	120.9(1)
N(2)-C(31)-C(36)	118.7(2)	N(1)-C(7)-C(8)	121.8(1)	N(2)-C(19)-C(20)	119.6(1)
N(1)-C(7)-C(12)	120.2(2)	N(2)-C(19)-C(24)	123.0(1)	N(1)-C(13)-C(14)	119.7(2)
N(2)-C(25)-C(26)	119.2(1)	N(1)-C(13)-C(18)	122.4(1)	N(2)-C(25)-C(30)	122.8(1)
C(12)-S(1)-C(14)	98.88(8)	C(30)-S(2)-C(24)	101.36(7)	S(1)-C(12)-C(7)	120.4(1)
S(2)-C(24)-C(23)	160.1(1)	S(1)-C(12)-C(11)	119.0(1)	S(2)-C(24)-C(29)	123.3(1)
S(1)-C(14)-C(13)	120.3(1)	S(2)-C(30)-C(25)	123.9(1)	S(1)-C(14)-C(15)	118.9(1)
S(2)-C(30)-C(29)	106.1(1)	C(2)-N(1)-C(7)	116.7(1)	C(19)-N(2)-C(25)	124.6(1)
C(7)-N(1)-C(13)	120.7(1)	C(25)-N(2)-C(31)	118.4(1)	C(2)-N(1)-C(13)	117.6(1)
C(19)-N(2)-C(31)	117.0(1)	C(4)-B(1)-C(40)	115.5(1)	C(4)-B(1)-C(49)	120.1(1)
C(40)-B(1)-C(49)	124.3(1)	B(1)-C(4)-C(3)	121.8(1)	B(1)-C(4)-C(5)	120.2(1)
B(1)-C(40)-C(41)	120.8(1)	B(1)-C(40)-C(45)	121.1(1)	B(1)-C(49)-C(50)	120.8(1)
B(1)-C(49)-C(54)	121.2(1)	C(22)-C(6)-C(1)	122.1(1)	C(22)-C(6)-C(5)	120.0(1)
C(6)-C(22)-C(21)	120.7(1)	C(6)-C(22)-C(23)	122.1(1)		
CC-MP8					
S(1)-C(3)	1.756(2)	S(1)-C(4)	1.758(2)	N(1)-C(9)	1.412(2)
N(1)-C(10)	1.404(2)	N(1)-C(13)	1.443(2)	C(1)-C(22)	1.481(2)
B(1)-C(24)	1.567(3)	B(2)-C(26)	1.575(3)	B(1)-C(28)	1.574(3)
B(2)-C(46)	1.578(3)	B(1)-C(37)	1.572(3)	B(2)-C(55)	1.576(3)
C(9)-N(1)-C(10)	124.1(1)	C(9)-N(1)-C(13)	118.1(1)	C(10)-N(1)-C(13)	117.3(1)
N(1)-C(9)-C(4)	121.9(2)	N(1)-C(9)-C(8)	120.2(2)	N(1)-C(10)-C(3)	122.6(2)
N(1)-C(10)-C(11)	120.1(2)	N(1)-C(13)-C(14)	118.4(2)	N(1)-C(13)-C(18)	120.0(2)
C(24)-B(1)-C(28)	120.9(2)	C(24)-B(1)-C(37)	115.5(2)	C(28)-B(1)-C(37)	123.6(2)
C(26)-B(2)-C(46)	117.0(2)	C(26)-B(2)-C(55)	119.7(2)	C(46)-B(2)-C(55)	123.3(2)
B(1)-C(24)-C(23)	121.8(2)	B(1)-C(24)-C(25)	120.8(2)	B(1)-C(28)-C(29)	121.8(2)
B(1)-C(28)-C(33)	120.7(2)	B(1)-C(37)-C(38)	120.0(2)	B(1)-C(37)-C(42)	121.0(2)
B(2)-C(26)-C(25)	121.3(2)	B(2)-C(26)-C(27)	121.3(2)	B(2)-C(46)-C(47)	120.9(2)
B(2)-C(46)-C(51)	121.5(2)	B(2)-C(55)-C(56)	120.1(2)	B(2)-C(55)-C(60)	121.7(2)
C(1)-C(22)-C(23)	120.5(2)	C(1)-C(22)-C(27)	121.8(2)	C(22)-C(1)-C(2)	121.0(2)
C(22)-C(1)-C(12)	122.4(2)				

¹H and ¹³C-NMR NMR Spectra and HRMS of **1**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **2**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **CC-MP1**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **5**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **CC-MP2**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **7**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **CC-MP4**:

¹H and ¹³C-NMR NMR Spectra and HRMS of 8:

¹H and ¹³C-NMR NMR Spectra and HRMS of **10**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **11**:

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm

¹H and ¹³C-NMR NMR Spectra and HRMS of **CC-MP5**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **12**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **CC-MP6**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **14**:

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10} ppm

¹H and ¹³C-NMR NMR Spectra and HRMS of **CC-MP7**:

¹H and ¹³C-NMR NMR Spectra and HRMS of **CC-MP8**:

