Supporting Information

Synthesis, characterization and second-order nonlinear optical behaviour of ferrocene-diketopyrrolopyrrole dyads. Effect of alkene vs alkyne linkers

Sarbjeet Kaur,^a Nick Van Steerteghem,^b Paramjit Kaur,^{*,a} Koen Clays^b and Kamaljit Singh^{*,a}

^aDepartment of Chemistry, UGC Centre of Advanced Study-II, Guru Nanak Dev University, Amritsar-143005, India. Email: <u>kamaljit.chem@gndu.ac.in</u> ^bDepartment of Chemistry, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium. E-mail: <u>Koen.Clays@fys.kuleuven.be</u>

Sr. No.	Content	Page No.
1.	Table S1. Comparison of first hyperpolarizability, β_{HRS} (Literature <i>vs</i> . Present report).	S4-S5
2.	Figure S1. Thermogravimetric (TGA) curves of dyads 5a-c.	S6-S7
3.	Figure S2. UV-visible spectra of dyad 5a in dichloromethane and resolved peaks after band-fitting. (Black: experimental, Green: fitted curve)	S8
4.	Figure S3. UV-visible spectra of dyad 5b in dichloromethane and resolved peaks after band-fitting. (Black: experimental, Green: fitted curve)	S9
5.	Figure S4. UV-visible spectra of dyad 5c in dichloromethane and resolved peaks after band-fitting. (Black: experimental, Green: fitted curve)	S10
6.	Figure S5 . Contour surfaces of frontier molecular orbitals of dyads 5a-c derived from TD-DFT at B3LYP/ 6-31G basis set (Iso-surface value= 0.02).	S11
7.	Figure S6. Spectro-electrochemical curve of chromophore 5b recorded at 1×10^{-5} M in dichloromethane.	S12
8.	Figure S7. Spectro-electrochemical curve of chromophore 5c recorded at 1×10^{-5} M in dichloromethane.	S12
9.	Figure S8. Linear correlation between the optical gap E_g^{opt} , determined from UV/CV and TD-DFT for the dyads 5a-c .	S13
10.	Table S2. Energies of the Frontier Orbitals (eV) HOMO-n to LUMO+n (n=0-6) obtained from TD-DFT carried out at B3LYP/6-31G level in dichloromethane as solvent medium.	S13
11.	Table S3. Energies of the Frontier Orbitals (eV) HOMO-n to LUMO+n (n=0-6) obtained from TD-DFT carried out at B3LYP/6-31G level in gas phase.	S14
12.	Figure S9. B3LYP/6-31G predicted orbital energy level diagram for the dyads 5a-c.	S14
13.	Figure S10. Linear correlation of absorbance and concentration of 5a at 606 nm.	S15
14.	Figure S11. Linear correlation of absorbance and concentration of 5b at 640 nm.	S15
15.	Figure S12. Linear correlation of absorbance and concentration of 5c at 640 nm.	S16
16.	Table S4. Comparison of experimentally (UV-visible) and theoretically (TD-DFT) calculated absorption bands and assignment of electronic transitions for the dyads 5a-c .	S16-S17
17.	Figure S13. Contour surfaces of frontier molecular orbitals involved in LE electronic transitions of the dyad 5a obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.	S18
18.	Figure S14. Contour surfaces of frontier molecular orbitals involved in HE electronic transitions of the dyad 5a obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.	S19
19.	Figure S15. Contour surfaces of frontier molecular orbitals involved in LE electronic transitions of the dyad 5b obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.	S20
20.	Figure S16. Contour surfaces of frontier molecular orbitals involved in HE electronic transitions of the dyad 5b obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.	S21
21.	Figure S17. Contour surfaces of frontier molecular orbitals involved in LE electronic transitions of the dyad 5c obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.	S22
22.	Figure S18. Contour surfaces of frontier molecular orbitals involved in HE electronic transitions of the dyad 5c obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.	S23

23.	Figure S19. Electron density maps of dyads 5a-c with iso-value of 0.0004.	S24
24.	Table S5. UV-visible data of 5a-c in various solvents.	S25
25.	Figure S20. Emission spectra of 5a at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 332$ nm.	S26
26.	Figure S21. Emission spectra of 5b at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 328$ nm.	S26
27.	Figure 22a. Emission spectra of 5c at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 286$ nm.	S27
28.	Figure 22b. Emission spectra of 5c at 1 x 10 ⁻⁵ in DCM at $\lambda_{ex} = 360$ nm.	S27
29.	Figure S23. ¹ H NMR of 2 (CDCl ₃ , 500 MHz).	S28
30.	Figure S24. ¹³ C NMR of 2 (CDCl ₃ , 500 MHz).	S29
31.	Figure S25. ¹ H NMR of 3 (CDCl ₃ , 500 MHz).	S30
32.	Figure S26. ¹³ C NMR of 3 (CDCl ₃ , 500 MHz).	S31
33.	Figure S27. ¹ H NMR of 7 (CDCl ₃ , 500 MHz).	S32
34.	Figure S28. ¹³ C NMR of 7 (CDCl ₃ , 500 MHz).	S33
35.	Figure S29. ¹ H NMR of 5a (CDCl ₃ , 500 MHz).	S34
36.	Figure S30. ¹³ C NMR of 5a (CDCl ₃ , 500 MHz).	S35
37.	Figure S31. ¹ H NMR of 5b (CDCl ₃ , 500 MHz).	S36
38.	Figure S32. ¹³ C NMR of 5b (CDCl ₃ , 500 MHz).	S37
39.	Figure S33. ¹ H NMR of 5c (CDCl ₃ , 500 MHz).	S38
40.	Figure S34. ¹³ C NMR of 5c (CDCl ₃ , 500 MHz).	S39
41.	Table S6. Cartesian co-ordinates of optimized geometry (B3LYP/6-31G) of 5a.	S39-S42
42.	Table S7. Cartesian co-ordinates of optimized geometry (B3LYP/6-31G) of 5b.	S42-S44
43.	Table S8. Cartesian co-ordinates of optimized geometry (B3LYP/6-31G) of 5c.	S44-S47
44.	Complete reference 75.	S47

Chromophores	X	$\frac{\beta_{HRS}}{(10^{-30} \text{ esu})}$	References
Fc X	H CN CHO	203	J.C. Calabrese, LT. Cheng, J.C. Green, S.R. Marder, W. Tam, <i>J. Am. Chem. Soc.</i> , 113 , 1991, 7227.
Fc		21	J. Mata, S. Uriel, E. Peris, R. Llusar,
Fc N-X	Cr(CO) ₅ Mo(CO) ₅ W(CO) ₅	63 95 101	S. Houbrechts and A. Persoons, J. Organomet. Chem., 562, 1998, 197.
Fc → ⊕ N−CH ₃		40	J.A. Mata, E. Peris, I. Asselberghs, R. Van Boxel, A. Persoons, <i>New J.</i> <i>Chem.</i> , 25 , 2001, 1043.
Fc		-	
		56	
Fc		47	B.J. Coe, R.J. Docherty, S.P. Foxon,
Fc- H ₃ C		121	E.C. Harper, M. Helliwell, J. Raftery, K. Clays, E. Franz, B.S. Brunschwig, <i>Organometallics</i> , 28 , 2009, 6880.
		317	
Fc		139	
		80	B. J. Coe, J. Fielden, S.P. Foxon, I. Asselberghs, K. Clays, S. van
		100	Cleuvenbergen, B.S. Brunschwig, Organometallics, 30 , 2011, 5731.

Table S1. Comparison of first hyperpolarizability, β_{HRS} (Literature vs Present report).

_	1		1
FC FC	СНО	83	
	CN	54	
5			P. Kaur, M. Kaur, G. Depotter, S.
		24	Van Cleuvenbergen, I. Asselberghs,
Fc Fc		24	K. Clays and K. Singh, J. Mater.
			Chem., 2012, 22, 10597.
CN			
NĆ			
		75	
		,0	
s l			
			P Kaur M Kaur G Depotter S
			Van Cleuvenbergen I Asselberghs
NC			K Clays and K Singh I Mater
Fc ,		120	Cham = 2012 22 10507
s			<i>Chem.</i> , 2012, 22 , 10397.
S S			
-CN			
	CITO	207	
	СНО	207	
FcX	CH=C(CN)2	303	
	- m	913	
R [´] O			
R= (CH ₂) ₉ CH ₃			
O R		173	
Free Br			S. Kaur, S. Dhoun, G. Depotter, P.
			Kaur, K. Clays and K. Singh, <i>RSC</i>
Ř Ö			<i>Adv.</i> , 2015, 5 , 84643.
$R = (CH_2)_9 CH_3$		1.50	-
	Fc	152	
x	Fc-C6H4-	160	
NC ~	Dr	110	
Y I I I I I I I I I I I I I I I I I I I		140	
	CN	146	
	СНО	183	S Dhaun C Danattar S Kaur D
NC /=_		182	S. Dhoun, G. Depotter, S. Kaur, P.
│ /── /── /── Br			Kaur, K. Clays and K. Singn, RSC
			Aav., 2010, 0 , 50088.
		124	-
		124	
(CH ₂) ₉ CH ₃	Br	115	
	СНО	150	
	-C.H.CHO	231	
	-061140110	<i>4J</i> 1	This report
1130(1120/)9			
$R=(CH_2)_9CH_3$			

Thermogravimetric Curves

Figure S1. Thermogravimetric (TGA) curves of dyads 5a-c.

Figure S2. UV-visible spectra of dyad **5a** in dichloromethane and resolved peaks after band-fitting. (Black: experimental, Green: fitted curve)

Figure S3. UV-visible spectra of dyad **5b** in dichloromethane and resolved peaks after band-fitting. (Black: experimental, Green: fitted curve)

Figure S4. UV-visible spectra of dyad **5c** in dichloromethane and resolved peaks after band-fitting. (Black: experimental, Green: fitted curve)

Figure S5. Contour surfaces of frontier molecular orbitals of dyads **5a-c** derived from TD-DFT at B3LYP/ 6-31G basis set (Iso-surface value= 0.02).

Figure S6. Spectro-electrochemical curve of chromophore 5b recorded at 1 x 10⁻⁵ M in dichloromethane

Figure S7. Spectro-electrochemical curve of chromophore 5c recorded at 1 x 10⁻⁵ M in dichloromethane.

Figure S8. Linear correlation between the optical gap E_g^{opt} , determined from UV/CV and TD-DFT for the dyads **5a-c**.

Table S2. Energies of the Frontier Orbitals (eV) HOMO-n to LUMO+n (n=0-6) obtained from TD-DFT carried out at B3LYP/6-31G level in dichloromethane as solvent medium.

Dyads	5 a	5b	5c
НОМО-6	-6.86815	-7.03795	-6.80176
HOMO-5	-6.77944	-6.87523	-6.52583
HOMO-4	-6.49373	-6.53617	-6.50270
HOMO-3	-6.11249	-6.19277	-6.10624
HOMO-2	-5.55548	-5.59793	-5.56554
HOMO-1	-5.52527	-5.58514	-5.52609
НОМО	-5.04199	-5.16962	-5.02268
LUMO	-2.83162	-3.15734	-2.98074
LUMO+1	-1.54289	-2.01854	-2.15378
LUMO+2	-0.77961	-1.32982	-1.45527
LUMO+3	-0.41959	-0.60001	-0.75131
LUMO+4	-0.30640	-0.34667	-0.48028
LUMO+5	-0.15075	-0.16926	-0.31674
LUMO+6	0.24681	0.65661	-0.17715

Table S3. Energies of the Frontier Orbitals (eV) HOMO-n to LUMO+n (n=0-6) obtained from TD-DFT carried out at B3LYP/6-31G level in gas phase.

	1	1	
Dyads	5a	5b	5c
НОМО-6	-6.72203	-7.02544	-6.69101
HOMO-5	-6.59604	-6.73781	-6.62352
HOMO-4	-6.57237	-6.68747	-6.44202
НОМО-3	-6.06623	-6.21943	-6.12093
НОМО-2	-5.63330	-5.74813	-5.68419
HOMO-1	-5.55847	-5.68527	-5.60718
НОМО	-4.88417	-5.08635	-4.92853
LUMO	-2.66182	-3.04387	-2.88359
LUMO+1	-1.47186	-1.95296	-2.08031
LUMO+2	-0.66505	-1.31268	-1.43214
LUMO+3	-0.38858	-0.54967	-0.68763
LUMO+4	-0.38586	-0.49797	-0.51619
LUMO+5	-0.19429	-0.26613	-0.43702
LUMO+6	0.37906	0.76355	-0.25524

Figure S9. B3LYP/6-31G predicted orbital energy level diagram for the dyads 5a-c.

Figure S10. Linear correlation of absorbance and concentration of 5a at 606 nm.

Figure S11. Linear correlation of absorbance and concentration of 5b at 640 nm.

Figure S12. Linear correlation of absorbance and concentration of 5c at 640 nm.

Table S4. Comparison of experimentally (UV-visible) and theoretically (TD-DFT) calculated absorption bands and assignment of electronic transitions for the dyads **5a-c**.

Dyad	λ_{exp}^{a}	E(eV)/	Oscillator	Transition	Assignment	CI
	(nm)	$\lambda_{\text{theor}}^{b}(nm)$	strength, <i>f</i>			coefficient
5a	606	2.1270/	0.8644	3A H-2->L+4	$M \rightarrow Cp ring$	-0.24844
		553.75				(12%)
				H->L	D→A+	0.55219
					$\pi \rightarrow \pi^*$	(61%)
	558	2.3590/	0.0258	4A, H-4->L+5	$M \rightarrow Cp ring$	-0.29834
		499.29			1 0	(18%)
				H-2->L+4	$M \rightarrow Cp ring$	0.43672
						(43%)
				H-1->L	D→A	0.29406
						(17%)
	404	2.8788/	0.0648	8A, H-3->L	D→A+	0.62014
		409.14			$\pi \rightarrow \pi^*$	(77%)
				H->L+1	$\pi \rightarrow \pi^*$	-0.26583
						(14%)
	379	3.2398/	0.2698	11A, H-5->L	ILCT	0.23272
		363.55				(11%)
				H-3->L	D→A	0.21999
						(10%)
				HOMO->L+1	$\pi \rightarrow \pi^*$	0.57160
						(65%)
	332	3.6155/	0.0658	15A, H-6->L	ILCT+	0.58449

		325.77			$\pi \rightarrow \pi^*$	(68%)
				H->L+2	$\pi \rightarrow \pi^*$	-0.26570
						(14%)
5b	640	1.7690/	0.8508	1A, H-1->L	D→A	-0.24444
		665.82				(12%)
				H->L	D→A+	0.59009
					$\pi \rightarrow \pi^*$	(70%)
	594	2.0063/	0.5200	3A, H-1->L	D→A	0.40514
		587.07				(33%)
				H->L	D→A+	0.39188
					$\pi \rightarrow \pi^*$	(31%)
	428	2.7085/	0.0623	8A, H-3->L	D→A+	0.63856
		434.86			$\pi \rightarrow \pi^*$	(82%)
				H->L+1	$\pi \rightarrow \pi^{*+}$	-0.23667
					D→A	(11%)
	398	2.8860/	0.2193	9A, H-3->L	$\pi \rightarrow \pi^{*+}$	0.23058
		408.12			D→A	(11%)
				H->L+1	$\pi \rightarrow \pi^*$	0.57450
						(66%)
	328	2.9698/	0.026	10A, H-5->L	$\pi \rightarrow \pi^{*+}$	0.62147
		396.60			ILCT	(77%)
5c	640	1.8031/	1.2955	1A, H->L	D→A+	0.62144
		653.23			$\pi \rightarrow \pi^*$	(77%)
	586	2.0091/	0.4269	3A, H-2->L+5	$M \rightarrow Cp ring$	-0.26282
		586.25				(14%)
				H-1->L	D→A	0.34936
						(24%)
				H-1->L+6	$M \rightarrow Cp ring$	-0.26444
	-				$+\pi \rightarrow \pi^*$	(14%)
				H->L	D→A+	0.33754
					$\pi \rightarrow \pi^*$	(23%)
	387	2.8152/	0.1008	9A, H-3->L	D→A+	0.63774
		418.38			$\pi \rightarrow \pi^*$	(81%)
	360	3.2008/	0.2125	14A, H-5->L	ILCT	0.50406
		367.98				(51%)
				H-4->L	D→A	-0.26176
						(14%)
				H-1->L+1	D→A	0.29802
	206	2.66704	0.1707			(18%)
	286	3.6670/	0.1706	20A, H-3->L+1	$D \rightarrow A^+$	0.67267
		1 271 70	1	1	*	14(1%)

Figure S13. Contour surfaces of frontier molecular orbitals involved in LE electronic transitions of the dyad **5a** obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.

Figure S14. Contour surfaces of frontier molecular orbitals involved in HE electronic transitions of the dyad **5a** obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.

Figure S15. Contour surfaces of frontier molecular orbitals involved in LE electronic transitions of the dyad **5b** obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.

Figure S16. Contour surfaces of frontier molecular orbitals involved in HE electronic transitions of the dyad **5b** obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.

Figure S17. Contour surfaces of frontier molecular orbitals involved in LE electronic transitions of the dyad **5c** obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.

Figure S18. Contour surfaces of frontier molecular orbitals involved in HE electronic transitions of the dyad **5c** obtained from TD-DFT calculations using dichloromethane as solvent at an iso-surface value of 0.02 au.

5a

5b

Figure S19. Electron density maps of dyads **5a-c** with iso-value of 0.0004.

Solvent	Hexane	Toluene	Diethyl	DCM	THF	Methanol	ACN	DMF	DMSO
Drugd			ether						
		<i>(</i>) =	7 04	60.6	60.1			60.6	(10)
5 a	593	605	594	606	601	597	597	606	610
	(71074)	(60398)	(67031)	(55100)	(53300)		(61766)	(55278)	(44077)
	549	557	550	558	553	552	552	559	563
	(50443)	(41248)	(47261)	(38800)	(37664)		(44660)	(41587	(34173)
	400	402	400	404	403	403	401	403	402
	(20160)	(12974)	(10010)	(12200)	(15993)		(12508)	(14791)	(6709)
	376	380	378	379	378	378	382	381	382
	(21322)	(13842)	(10908)	(13100)	(16662)		(12678)	(14837)	(6946)
	329	332	329	332	330	329	330	332	333
	(23668)	(16055	(13797)	(16600)	(19999)		(16704)	(18349)	(11310)
5b	628	639	622	640	634	610	628	627	634
	(40292)	(37460)	(46430)	(32800)	(36478)	(23197)	(30813)	(20909)	
	566	591		594	588				
	(24546)	(27697)		(26000)	(28278)				
	421	425	418	428	423		424	420	
	(3996)	(7473)	(11053)	(6300)	(6009)		(4364)	(2755)	
	400	406	401	398	405	405	403	408	406
	(4337)	(7609)	(11323)	(5700)	(6312)	(4013)	(4186)	(2524)	
	335	339	332	328	327	327	324	327	337
	(11978)	(14073)	(21227)	(15300)	(13783)	(8976)	(11110)	(7222)	
5c	630	642	629	640	634	nd	630	638	632
	(30663)	(52359)	(67650)	(52900)	(51124)			(39893)	
	581	591	574	586	591	nd	592	588	595
	(19897)	(36522)	(46183)	(36400)	(37422)			(30737)	
	385	388	380	387	386	nd	385	387	
	(5681)	(15263)	(18660)	(16800)	(15634)			(14120)	
	358	362	356	360	359	nd	355	359	359
	(9239)	(20005)	(24576)	(23100)	(21112)			(18818)	
	285	289	283	286	284	nd	281	290	
	(5865)	(14999)	(17003)	(17800)	(15304)			(14971)	

Table S5. UV-visible data of 5a-c in various solvents.^a

^aAbsorption wavelength (nm) at room temperature ($c \approx 1 \times 10^{-5} \text{ M}$) and molar extinction coefficient between brackets (M⁻¹ cm⁻¹).

Figure S20. Emission spectra of 5a at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 332$ nm.

Figure S21. Emission spectra of 5b at 1 x 10⁻⁵ in DCM at λ_{ex} = 328 nm.

Figure 22a. Emission spectra of 5c at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 286$ nm.

Figure 22b. Emission spectra of 5c at 1 x 10⁻⁵ in DCM at $\lambda_{ex} = 360$ nm.

Figure S23. ¹H NMR of **2** (CDCl₃, 500 MHz).

Figure S24. ¹³C NMR of **2** (CDCl₃, 500 MHz).

Figure S25. ¹H NMR of **3** (CDCl₃, 500 MHz).

Figure S26. ¹³C NMR of **3** (CDCl₃, 500 MHz).

Figure S27. ¹H NMR of **7** (CDCl₃, 500 MHz).

Figure S28. ¹³C NMR of 7 (CDCl₃, 500 MHz).

Figure S29. ¹H NMR of 5a (CDCl₃, 500 MHz).

Figure S30. ¹³C NMR of 5a (CDCl₃, 500 MHz). (Inset shows the expanded region from 10-45 ppm)

Figure S31. ¹H NMR of **5b** (CDCl₃, 500 MHz).

Figure S32. ¹³C NMR of **5b** (CDCl₃, 500 MHz). (Inset shows the expanded region from 10-50 ppm)

Figure S33. ¹H NMR of **5c** (CDCl₃, 500 MHz).

Figure S34. ¹³C NMR of **5c** (CDCl₃, 500 MHz). (Inset shows the expanded region from 10-45 ppm)

Cente	er Ato	mic At	omic	Coordinat	es (Ar	ngstroms)
Nı	umber	Number	Туре	X	Y	Z
1	26	0	-7.805683	-3.611190	0.14	18050
2	6	0	-6.946630	-2.832038	-1.57	'0474
3	6	0	-6.042142	-3.788659	-0.97	0289
4	6	0	-6.749596	-5.049983	-0.90	3412
5	1	0	-6.343335	-5.971688	-0.51	5618
6	6	0	-8.045285	-4.876535	-1.48	34401

Table S6. Cartesian co-ordinates of optimized geometry (B3LYP/6-31G) of 5a.

7	1	0	-8.796216	-5.642053	-1.600177
8	6	0	-8.166002	-3.507102	-1.897384
9	1	0	-9.025725	-3.063214	-2.374309
10	6	0	-8.140592	-2.039539	1.471295
11	1	0	-7.881157	-1.004154	1.316154
12	6	0	-7.310105	-3.033438	2.088174
13	1	0	-6.312198	-2.877099	2.467152
14	6	0	-8.038161	-4.270077	2.110283
15	1	0	-7.688159	-5.204845	2.519297
16	6	0	-9.321091	-4.039565	1.509211
17	1	0	-10.104111	-4.771175	1.385774
18	6	0	-9.384529	-2.661406	1.114048
19	1	0	-10.224534	-2.175025	0.643468
20	1	0	-6.731489	-1.793410	-1.766667
21	6	0	-4.674017	-3.584173	-0.537358
22	1	0	-4.217823	-4.424919	-0.016578
23	6	0	-3.936398	-2.463772	-0.748288
24	1	0	-4.365408	-1.621404	-1.282920
25	6	0	-0.675145	-1.071584	-0.165975
26	6	Õ	-2.579030	-2.284640	-0.324655
27	6	0	-1.638678	-3.049460	0.351642
28	8	0	-1.992549	-1.053196	-0.649957
29	6	Õ	-0.445071	-2.293972	0.452208
30	1	Õ	-1 792961	-4 047006	0 731568
31	1	0	0.490192	-2.579289	0.914440
32	6	Ő	0 183742	0.045882	-0 342384
33	6	Ő	1.510580	0.140414	0.086557
34	6	0	0 997420	2 149402	-0 970210
35	6	Ő	2 027733	1 411928	-0 284796
36	6	Ő	2 540508	-0 595476	0 771166
37	6	Ő	3 351965	1 506771	0 140446
38	8	Õ	2 574862	-1 740125	1 284969
39	8	Ő	0.967505	3 295993	-1 478794
40	7	Ő	-0 130043	1 252619	-0 984673
41	, 7	0	3 669920	0 304239	0 781959
42	6	Õ	-1 406842	1 674817	-1 575277
43	1	0 0	-1 149830	2 457625	-2.295175
44	1	Ő	-1 843288	0.830560	-2 112236
45	6	Ő	-2 400932	2.227755	-0 538938
46	1	0	-2.593680	1 461756	0.222996
47	1	Ő	-1 941264	3 085779	-0.030480
48	6	Ő	-3 729673	2 655218	-1 187134
49	1	Ő	-3 533017	3 406023	-1 967486
50	1	Ő	-4 180555	1 789562	-1 697191
51	6	õ	-4 738254	3 228045	-0 174563
52	1	0	-4 293170	4 102396	0 323840
53	1	Ő	-4 920610	2 483645	0.615757
54	6	Õ	-6 080662	3 633095	-0 809745

55	1	0	-6.525895	2.757372	-1.307397	
56	1	0	-5.898877	4.376051	-1.601358	
57	6	0	-7.087839	4.206698	0.203675	
58	1	0	-6.646414	5.087869	0.693933	
59	1	0	-7.261431	3.467364	1.000942	
60	6	0	-8.436688	4.598476	-0.426399	
61	1	0	-8.878119	3.716656	-0.916370	
62	1	0	-8.263910	5.337809	-1.223594	
63	6	0	-9.443094	5.171439	0.587912	
64	1	0	-9.004824	6.056536	1.074359	
65	1	0	-9.612586	4.434350	1.388178	
66	6	0	-10.795628	5.556230	-0.039353	
67	1	0	-11.232166	4.671497	-0.526318	
68	1	0	-10.626520	6.293447	-0.838113	
69	6	0	-11.794034	6.125191	0.981627	
70	1	0	-11.396222	7.029260	1.459634	
71	1	0	-12.746306	6.389086	0.507048	
72	1	0	-12.005406	5.396254	1.774230	
73	6	0	4.947525	-0.112555	1.375778	
74	1	0	5.377049	0.731590	1.918871	
75	1	0	4.691441	-0.899050	2.091833	
76	6	0	5.951458	-0.655103	0.343353	
77	1	0	5.515632	-1.536309	-0.146161	
78	1	0	6.117868	0.101186	-0.434279	
79	6	0	7.296246	-1.024891	0.993931	
80	1	0	7.126912	-1.758081	1.797328	
81	1	0	7.722954	-0.130334	1.472753	
82	6	0	8.315730	-1.596880	-0.007975	
83	1	0	7.894973	-2.497853	-0.479713	
84	1	0	8.473490	-0.869290	-0.818741	
85	6	0	9.671744	-1.943167	0.633077	
86	1	0	9.515205	-2.671710	1.443444	
87	1	0	10.089078	-1.041296	1.106946	
88	6	0	10.695354	-2.509079	-0.367991	
89	1	0	10.282013	-3.415354	-0.836788	
90	1	0	10.845416	-1.783357	-1.182190	
91	6	0	12.055966	-2.842560	0.270380	
92	1	0	12.467536	-1.935940	0.740393	
93	1	0	11.906851	-3.569291	1.083874	
94	6	0	13.081727	-3.404516	-0.730511	
95	1	0	12.673145	-4.313564	-1.198477	
96	1	0	13.228866	-2.679429	-1.545983	
97	6	0	14.444838	-3.732024	-0.093624	
98	1	0	14.851423	-2.823626	0.375227	
99	1	0	14.298031	-4.457523	0.720180	
100	6	0	15.463324	-4.289545	-1.100984	
101	1	0	16.422374	-4.513471	-0.619457	
102	1	0	15.095514	-5.215244	-1.561410	

103	1	0	15.653443	-3.570331	-1.907735
104	6	0	4.208970	2.631760	-0.042421
105	6	0	6.095197	3.821089	0.103499
106	6	0	5.191585	4.609231	-0.551015
107	1	0	5.368105	5.606264	-0.918873
108	6	0	3.981505	3.853545	-0.647955
109	1	0	3.045761	4.148671	-1.102803
110	8	0	5.538201	2.598841	0.434782
111	35	0	7.894468	4.104203	0.608805

 Table S7. Cartesian co-ordinates of optimized geometry (B3LYP/6-31G) of 5b.

Center Atomic		nic Ato	omic	Coordinates (Angstroms)		
Nur	nber	Number	Туре	X	Y	Z
	26	0	-7.387338	-3.692064	0.1339	910
2	6	0	-6.676358	-2.627891	-1.4973	23
3	6	0	-5.712322	-3.639478	-1.1208	74
4	6	0	-6.389537	-4.916971	-1.2043	78
5	1	0	-5.938828	-5.875883	-0.9990	68
6	6	0	-7.727419	-4.692753	-1.6574	72
7	1	0	-8.470965	-5.452614	-1.8390	02
8	6	0	-7.903826	-3.279834	-1.8393	42
9	1	0	-8.805508	-2.793263	-2.1764	74
10	6	0	-7.733141	-2.344560	1.6844	489
11	1	0	-7.576693	-1.277808	1.6547	728
12	6	0	-6.769877	-3.326367	2.091	104
13	1	0	-5.759067	-3.126127	2.4105	584
14	6	0	-7.386066	-4.619426	1.998	575
15	1	0	-6.923878	-5.561885	2.246	778
16	6	0	-8.732812	-4.435774	1.5375	507
17	1	0	-9.460242	-5.216136	1.3776	544
18	6	0	-8.947242	-3.030318	1.3423	354
19	1	0	-9.864261	-2.569130	1.0108	362
20	1	0	-6.495857	-1.565274	-1.5380	080
21	6	0	-4.323917	-3.461299	-0.7478	833
22	1	0	-3.825004	-4.348619	-0.3604	445
23	6	0	-3.616548	-2.306941	-0.860	194
24	1	0	-4.083117	-1.419108	-1.276	525
25	6	0	-0.348871	-0.935352	-0.2682	265
26	6	0	-2.247542	-2.148642	-0.4694	443
27	6	0	-1.286760	-2.952218	0.1318	370
28	8	0	-1.677250	-0.893972	-0.7218	806
29	6	0	-0.097662	-2.196853	0.2595	599
30	1	0	-1.428449	-3.972876	0.4500)99

31	1	0	0.848081	-2.502810	0.686756	
32	6	0	0.498853	0.195550	-0.380252	
33	6	0	1.825794	0.274787	0.059373	
34	6	0	1.297424	2.335399	-0.883921	
35	6	0	2.333627	1.566379	-0.234406	
36	6	0	2.856615	-0.493035	0.712512	
37	6	0	3.653039	1.645343	0.208884	
38	8	0	2.888792	-1.665368	1.158905	
39	8	0	1.263131	3.507265	-1.324970	
40	7	0	0.177492	1.433235	-0.954669	
41	7	0	3.975458	0.411349	0.785477	
42	6	0	-1.097540	1.873535	-1.537602	
43	1	0	-0.839513	2.680488	-2.230008	
44	1	0	-1.527844	1.046451	-2.105244	
45	6	0	-2.099258	2.388542	-0.489435	
46	1	0	-2.293582	1.597387	0.245979	
47	1	Õ	-1.646197	3.231385	0.049298	
48	6	Õ	-3.425266	2.831607	-1.132949	
49	1	Ő	-3 225086	3 601204	-1 893850	
50	1	Ő	-3.873345	1.978632	-1.666273	
51	6	Ő	-4 439102	3 380187	-0 112260	
52	1	Ő	-3 998712	4 245741	0 405202	
53	1	Ô	-4 622134	2 619517	0.662261	
54	6	Ő	-5 780230	3 793375	-0 744973	
55	1	0	-6 222805	2 924816	-1 257283	
56	1	0	-5 597002	4 548485	-1 524650	
57	6	0	-6 791401	4 350527	0 273586	
58	1	0	-6 354180	5 227080	0.775668	
50 50	1	0	-6.964210	3 600713	1.061176	
60	6	0	-0.904219	A 745184	_0 35/008	
61	1	0	-0.140132	3 867010	-0.334990	
62	1	0	-0.5/0550	5 /02/57	-0.034119	
62	1	0	-7.307730	5 306751	-1.144023 0.667600	
03 64	0 1	0	-7.147/00 8 715765	5.500251	0.002099	
04 65	1	0	-0./13203	0.100004	1.1308/8	
03 66	1	0	-9.31/830	4.302112	1.430/33	
00 67	0	0	-10.302/82	3.091348	0.030390	
0/	1	0	-10.930101	4.808/23	-0.45/020	
08	1	0	-10.334983	0.434393	-0./30830	
09 70	0	0	-11.504044	0.250290	1.060275	
/0	1	0	-11.109/14	/.152502	1.544587	
/1	1	0	-12.456635	0.514182	0.586388	
72	I	0	-11./13950	5.515508	1.84/86/	
73	6	0	5.252613	-0.007655	1.385439	
74	1	0	5.636545	0.813443	1.993751	
75	1	0	5.003667	-0.845959	2.042254	
76	6	0	6.308665	-0.439990	0.351558	
77	1	0	6.000820	-1.392856	-0.100010	
78	1	0	6.353639	0.302025	-0.455226	
79	6	0	7.703233	-0.568835	0.991051	
80	1	0	7.650242	-1.239647	1.862840	
81	1	0	8.010681	0.418721	1.364023	
82	6	0	8.768948	-1.095080	0.013119	

83	1	0	8.468580	-2.087033	-0.358669
84	1	0	8.809106	-0.434072	-0.866297
85	6	0	10.172169	-1.187638	0.639329
86	1	0	10.133282	-1.847009	1.520361
87	1	0	10.466857	-0.194506	1.009846
88	6	0	11.244553	-1.706842	-0.335387
89	1	0	10.947517	-2.699342	-0.708572
90	1	0	11.284072	-1.046792	-1.215746
91	6	0	12.647726	-1.799693	0.291230
92	1	0	12.943433	-0.807478	0.665296
93	1	0	12.608603	-2.460257	1.171280
94	6	0	13.722222	-2.315701	-0.682766
95	1	0	13.426948	-3.307958	-1.058001
96	1	0	13.763022	-1.654853	-1.562638
97	6	0	15.125455	-2.409219	-0.055693
98	1	0	15.419299	-1.417805	0.319723
99	1	0	15.084652	-3.069811	0.823080
100	6	0	16.192313	-2.923685	-1.035436
101	1	0	17.179170	-2.979318	-0.561101
102	1	0	15.939832	-3.926831	-1.401956
103	1	0	16.276993	-2.263337	-1.907880
104	6	0	4.513923	2.776951	0.101308
105	6	0	6.424676	3.934610	0.329207
106	6	0	5.501631	4.766875	-0.282380
107	1	0	5.681847	5.785596	-0.590522
108	6	0	4.291955	4.043042	-0.431150
109	1	0	3.360492	4.372010	-0.869557
110	8	0	5.820781	2.698487	0.572804
111	6	0	7.801343	4.125391	0.712466
112	1	0	8.189587	5.133543	0.488514
113	8	0	8.529093	3.265591	1.247046

Table S8. Cartesian co-ordinates of optimized geometry (B3LYP/6-31G) of 5c

Center Atomic			mic At		Coordinates (Angstroms)		
	Num	ber	Number	Туре	X	Ŷ	Z
	1	26	0	-8.477150	-3.435772	0.35313	3
	2	6	0	-7.661722	-2.693567	-1.40214	6
	3	6	0	-6.777691	-3.694803	-0.84543	1
	4	6	0	-7.541478	-4.920927	-0.74727	3
	5	1	0	-7.162931	-5.862776	-0.38047	1
	6	6	0	-8.852564	-4.683041	-1.26778	6
	7	1	0	-9.643880	-5.411148	-1.35054	3
	8	6	0	-8.925862	-3.308060	-1.67340	8
	9	1	0	-9.784229	-2.821882	-2.10976	1
	10	6	0	-8.712122	-1.845703	1.67681	9
	11	1	0	-8.442769	-0.816605	1.49844	2
	12	6	0	-7.868103	-2.849444	2.25796	51
	13	1	0	-6.848543	-2.708619	2.58127	/1

14	6	0	-8.616587	-4.071946	2.331504	
15	1	0	-8.262920	-5.009163	2.731625	
16	6	0	-9.925455	-3.822614	1.797778	
17	1	0	-10.727392	-4.540209	1.723776	
18	6	0	-9.984565	-2.447094	1.392780	
19	1	0	-10.839284	-1.949236	0.962473	
20	1	0	-7.406336	-1.665720	-1.606599	
21	6	0	-5.384628	-3.555735	-0.470974	
22	1	0	-4.947734	-4.416548	0.033350	
23	6	0	-4.604559	-2.470743	-0.713463	
24	1	Õ	-5.014217	-1.610190	-1.234018	
25	6	Õ	-1.267057	-1.225332	-0.242270	
26	6	Õ	-3 226952	-2 352752	-0 337631	
27	6	Ő	-2.302164	-3 155233	0.317127	
28	8	Ő	-2.595622	-1 151596	-0.689686	
29	6	Ő	-1 074215	-2 453585	0.378351	
30	1	Õ	-2 490404	-4 141845	0 709994	
31	1	0	-0.140423	-7 776690	0.818214	
32	6	0	-0.367288	-0.146527	-0.445579	
22	6	0	-0.307288	0.101081	0.030705	
33	6	0	0.970703	1 016013	-0.039703	
25	6	0	1 522106	1.910013	-1.104007	
26	6	0	1.333190	1.145275	-0.426372	
20	0	0	1.9/8300	-0.8/4490	0.030002	
2/	0	0	2.808123	1.189042	-0.021332	
20 20	8	0	1.9/3000	-2.010/31	1.15/494	
39	8	0	0.52/415	3.05/28/	-1.624624	
40	/	0	-0.642505	1.065910	-1.092655	
41	1	0	3.143393	-0.022910	0.625/10	
42	6	0	-1.907619	1.533968	-1.674582	
43	l	0	-1.6255/4	2.298/68	-2.404380	
44	1	0	-2.383049	0.703216	-2.199673	
45	6	0	-2.868671	2.138859	-0.636271	
46	1	0	-3.117745	1.378504	0.114681	
47	1	0	-2.355847	2.958103	-0.114893	
48	6	0	-4.159247	2.665644	-1.288754	
49	1	0	-3.903204	3.425000	-2.043055	
50	1	0	-4.655908	1.846016	-1.831312	
51	6	0	-5.145866	3.271683	-0.273761	
52	1	0	-4.644733	4.080841	0.278668	
53	1	0	-5.412286	2.508509	0.473538	
54	6	0	-6.429715	3.819995	-0.922373	
55	1	0	-6.926921	3.014216	-1.484650	
56	1	0	-6.161170	4.589528	-1.662144	
57	6	0	-7.421370	4.416386	0.093346	
58	1	0	-6.920629	5.214541	0.662475	
59	1	0	-7.698318	3.643957	0.827451	
60	6	0	-8.697923	4.981152	-0.555741	
61	1	0	-9.197092	4.184993	-1.129668	
62	1	0	-8.420033	5.757131	-1.285462	
63	6	0	-9.691518	5.572811	0.460654	
64	1	0	-9.191388	6.365453	1.038324	
65	1	0	-9.974711	4.795876	1.187627	

66	6	0	-10.964477	6.146630 -0.188350
67	1	0	-11.463608	5.354834 -0.766498
68	1	0	-10.680356	6.923177 -0.913834
69	6	0	-11.950241	6.734657 0.834184
70	1	0	-11.486436	7.549139 1.404811
71	1	0	-12.844398	7.136694 0.343759
72	1	0	-12.276433	5.970843 1.551385
73	6	0	4.406243	-0.496306 1.206018
74	1	0	4.883515	0.330196 1.736919
75	1	0	4.120150	-1.262814 1.932551
76	6	0	5.364936	-1.104199 0.166835
77	1	0	4.839264	-1.904602 -0.370439
78	1	0	5.636210	-0.339247 -0.571983
79	6	0	6.637508	-1.670759 0.821596
80	1	0	6.356857	-2.438864 1.557977
81	1	0	7.147000	-0.874306 1.387257
82	6	Õ	7 623228	-2 276451 -0 194380
83	1	Õ	7 111938	-3 064558 -0 767459
84	1	Ő	7 913592	-1 504563 -0 923247
85	6	Õ	8 888119	-2 862752 0 458134
86	1	0	8 595804	-3 638982 1 181834
87	1	0	9 395966	-2 077006 1 038953
88	6	0	0.878515	-3 /619/9 -0 557110
80	1	0	9.878515	-1 2/1017 -1 1/3258
00	1	0	10 177260	-4.241917 -1.145250 2.683552 -1.275057
01	6	0	11 137501	-4.060117 0.006200
02	1	0	11 646087	-3 281/63 0 685632
02	1	0	10.837853	-5.281405 0.085052 A \$40645 0.812558
93	6	0	10.837833	4.656606 0.012507
05	1	0	11 620838	5 / 22505 1 511258
95	1	0	12 422860	-3.432303 -1.311238
90	6	0	12.455609	-5.0/3404 - 1.052595 5.261816 0.265134
97	1	0	13.383707	-5.201010 -0.205154
90	1	0	13.694023	-4.400390 0.320007
99	1	0	13.08002/	-0.0410/0 0.446514
100	0	0	14.309820	-3.833/33 - 1.283804
101	1	0	15.251175	-0.281409 -0.792124
102	1	0	13.893883	-0.033008 - 1.8/1480
103	I	0	14./1/890	-5.089254 -1.989000
104	6	0	3./645//	2.276898 -0.224281
105	6	0	5./11211	3.421358 -0.119007
106	6	0	4./8/310	4.212995 -0.776857
107	I	0	4.964387	5.201512 -1.169638
108	6	0	3.562/58	3.500014 -0.846196
109	l	0	2.629305	3.816203 -1.290895
110	8	0	5.089925	2.214436 0.230401
111	6	0	7.099522	3.595303 0.249404
112	6	0	7.800983	2.585698 0.944881
113	6	0	7.779496	4.792088 -0.085920
114	6	0	9.136033	2.770294 1.291205
115	1	0	7.289163	1.667371 1.204498
116	6	0	9.110560	4.969563 0.261922
117	1	0	7.255459	5.576867 -0.620381

118	6	0	9.806688	3.959460	0.955891
119	1	0	9.668858	1.988663	1.826282
120	1	0	9.638932	5.882252	0.008701
121	6	0	11.216759	4.140839	1.326625
122	1	0	11.674845	3.293079	1.868743
123	8	0	11.889263	5.155484	1.071524

Complete reference 75.

Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.(complete reference 75).