Supporting Information for
Highly efficient organic light emitting diodes based on a D-A-D type
dibenzothiophene derivative exhibiting thermally activated delayedfluorescence with small $\Delta E_{S T}$
Xin He, Tong Shan, Xiangyang Tang, Yu Gao, Jinyu Li, Bing Yang and Ping Lu*
Contents
S-1 General Methods
S-2 Synthesis of DPAC-DBTDO
S-3 Thermal and Electrochemical Property
S-4 Single Crystal Data
S-5 Theoretical Calculation
S-6 Supplementary Photophysical Property
S-7 Electroluminescence Property

S-1 General Methods

General information

All the reagents and solvents used for the syntheses were purchased from Aldrich and Acros and used as received. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AVANCE 500 spectrometer at 500 MHz at 298 K , using DMSO-D ${ }_{6}$ as solvent and tetramethylsilane (TMS) as internal standard. The elemental analysis were performed by a Flash EA 1112, CHNS-O elemental analysis instrument. The MALDI-TOF-MS mass spectra were measured using an AXIMA-CFRTM plus instrument. Thermal gravimetric analysis (TGA) was measured on a Perkin-Elmer thermal analysis system from $30^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ at a heating rate of $10 \mathrm{~K} / \mathrm{min}$ under nitrogen flow rate of $80 \mathrm{~mL} / \mathrm{min}$. Differential scanning calorimetry (DSC) was performed on a NETZSCH (DSC-204) unit from $30^{\circ} \mathrm{C}$ to $400{ }^{\circ} \mathrm{C}$ at a heating rate of $10 \mathrm{~K} / \mathrm{min}$ under nitrogen atmosphere. The electrochemical properties (oxidation and reduction potentials) were carried out via cyclic voltammetry (CV) measurements by using a standard onecompartment, three-electrode electrochemical cell given by a BAS 100B/W electrochemical analyzer. Tetrabutylammoniumhexafluorophosphate (TBAPF6) in anhydrous dimethyl formamide (DMF) or anhydrous dichloromethane (0.1 M) were used as the electrolyte for negative or positive scan. UV-vis and fluorescence spectra were recorded on a Shimadzu UV-3100 spectrophotometer using 1 cm path length quartz cells. The fluorescence lifetime and $\operatorname{PLQY}\left(\Phi_{F}\right)$ of the prepared films were measured by FLS920 spectrometer. The Φ_{F} of different solutions were determined by using 0.1 M quinine sulfate as a reference $\left(\Phi_{\mathrm{F}}=0.546\right)$ and were calculated by using the following formula:

$$
\mathrm{Q}_{\mathrm{x}}=\mathrm{Q}_{\mathrm{r}}\left(\frac{A_{r}\left(\lambda_{r}\right)}{A_{x}\left(\lambda_{x}\right)}\right)\left(\frac{I\left(\lambda_{r}\right)}{I\left(\lambda_{x}\right)}\right)\left(\frac{n_{x}^{2}}{n_{r}^{2}}\right)\left(\frac{D_{x}}{D_{r}}\right)
$$

Where Q is the PLQY, A is the value of absorbance, I is the intensity of excitation source, n is the refractive index of solvent, D is the area of emission spectra, λ is the corresponding wavelength. The subscript r stands for the reference while x stands for test subject. The excitation wavelength was 340 nm .

Device fabrication

ITO glass was used as the substrate and the sheet resistance was 20Ω square $^{-1}$. The ITO glass substrates were cleaned with isopropyl alcohol, acetone, toluene and deionized water, dried in an oven at $120^{\circ} \mathrm{C}$, treated with UV-zone for 20 min , and finally transferred to a vacuum deposition system with a base pressure lower than 5×10^{-6} mbar for organic and metal deposition. The deposition rate of all organic layers was $1.0 \AA \mathrm{~s}^{-1}$. The cathode LiF (1 nm) was deposited at a rate of $0.1 \AA \mathrm{~s}^{-1}$ and then the capping Al metal layer (100 nm) was deposited at a rate of $4.0 \AA \mathrm{~s}^{-1}$. The electroluminescent (EL) characteristics were measured using a Keithley 2400 programmable electrometer and a PR-650 Spectroscan spectrometer under ambient condition at room temperature.

Computational Details

The ground-state (S_{0}) geometries were optimized at the B3LYP/6-31G(d, p) level. The HOMO/LUMO distributions are calculated on the basis of optimized S_{0} state. The higher absorption energy levels of both singlet and triplet states were calculated using TD-M062X/6-31G(d, p) method on the basis of the optimized configuration of S_{0}. For the purpose of investigating the properties of excited-states, natural transition orbitals (NTOs) of absorption were evaluated for the five lowest excitedstates, involving both singlet and triplet states under TD-M062X/6-31G(d, p) level. This approach provides the most compact representation of the electronic transitions in terms of an expansion into single particle orbitals by diagonalizing the transition density matrix associated with each excitation.

S-2 Synthesis of DPAC-DBTDO

Scheme S1. Synthesis route of DPAC-DBTDO.

Synthesis of DPAC-DBTDO: A solution of 9,9-diphenyl-9,10-dihydroacridine (DPAC) ($3.50 \mathrm{~g}, 10.5 \mathrm{mmol}$), 2,8-dibromodibenzo[b,d]thiophene 5,5 -dioxide ($1.87 \mathrm{~g}, 5 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(115.5 \mathrm{mg}, 0.3 \mathrm{mmol})$, tri-tert-butylphosphine tetrafluoroborate in (232 mg 0.5 mmol) and sodium tert-butoxide ($2.54 \mathrm{~g}, 15 \mathrm{mmol}$) were dissolved in toluene (30 mL). After degassed, the mixture was refluxed at $110^{\circ} \mathrm{C}$ for 24 h under nitrogen. After cooling to room temperature, 50 mL water was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over anhydrous magnesium sulphate. Then the mixture was concentrated. After recrystallization in ethanol, the light yellow powder was gained (3.69 g). Yield: $84 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO, ppm, ס) 8.26 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 14 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=$ $11.3,4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.02-6.89(\mathrm{~m}, 12 \mathrm{H}), 6.81(\mathrm{dd}, \mathrm{J}=7.80,1.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=8.3$ $\mathrm{Hz}, 4 \mathrm{H}$). MS (MALDI-TOF) m/z: [M ${ }^{+}$] calcd for $\mathrm{C}_{62} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, 878.30; found, 879.30. Elem. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 84.71 ; \mathrm{H}, 4.82 ; \mathrm{N}, 3.19$. Found: C, 84.38; H, 4.98; N, 3.22.

Figure S1. MALDI-TOF spectrum of DPAC-DBTDO.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of DPAC-DBTDO in DMSO.

S-3 Thermal and Electrochemical Property

Figure S3. (a) DSC test: glass-transition temperature (T_{g}) of $199^{\circ} \mathrm{C}$; (b) melt point of $358^{\circ} \mathrm{C}$ of DPAC-DBTDO; (c) TGA test: decomposition temperature (T_{d}) of $451^{\circ} \mathrm{C}$ of DPAC-DBTDO.

Figure S4. Cyclic voltammetry grams of DPAC-DBTDO. The potentials are calibrated against $\mathrm{Fc}^{+} / \mathrm{Fc}$ internal standard.

S-4 Single Crystal Data

The single crystal of DPAC-DBTDO was prepared by vapor deposition method. The diffraction experiments were carried out on a Rigaku R-AXIS RAPID diffractometer equipped with a MOKaandcontrol Software using the RAPID AUTO at $293(\pm 2)^{\circ} \mathrm{C}$. The crystal structures were solved with direct methods and refined with a full-matrix least-squares technique using the SHELXS programs. All angles and distances in crystals were measured using Mecury 1.4.1 Software.

Figure S5. Single crystal structure of DPAC-DBTDO: (a) molecular structure; (b) \& (c) Two existent hydrogen bonds; (d) packing structure.

Table S1. Crystallographic Data.

Empirical formula	$\mathrm{C}_{62} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
Formula weight	879.04
Crystal size	$0.13^{*} 0.12 * 0.10 \mathrm{~mm}$
Temperature	$293(2) \mathrm{K}$
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
a, \AA	$9.907(2)$
$\mathrm{b}, \AA \mathrm{\AA}$	$14.375(3)$
c, \AA	$16.621(3)$
α, deg	$97.46(3)$
β, deg	$91.84(3)$
γ, deg	$105.68(3)$
Z	2
Calculated density, $\mathrm{g} \mathrm{cm}^{-3}$	1.295

Figure S6. TD-DFT calculation of energy levels of DPAC-DBTDO.

Table S2. Calculated energy of singlet and triplet of DPAC-DBTDO.

	1	2	3	4	5
Singlet (eV)	3.6665	3.6810	4.0156	4.0261	4.6190
Triplet (eV)	3.4394	3.6580	3.6708	3.8334	3.8351

Figure $\mathbf{S 7}$. The S_{1} to S_{5} natural transition orbitals (NTO) of DPAC-DBTDO.

47.1\%

Figure S8. The T_{1} to T_{5} natural transition orbitals (NTO) of DPAC-DBTDO.

Calculated Geometry Data for DPAC-DBTDO (S_{0} optimization: unit \AA)

C	-1.68400200	2.46656700	1.53951000
C	-1.97475400	2.90250500	2.83798900
C	-1.49279000	2.19874000	3.94505300
C	-0.72467100	1.06876300	3.71342400
C	-0.41599600	0.61139100	2.42455500
C	-0.90470600	1.32095000	1.32676300
H	-2.58024800	3.79333900	2.96500900
H	-1.71389200	2.52784800	4.95496500
H	-0.69576600	1.00361700	0.31033300
C	0.72467100	-1.06876300	3.71342400
C	1.49279000	-2.19874000	3.94505300
C	1.97475400	-2.90250500	2.83798900
C	1.68400200	-2.46656700	1.53951000
C	0.90470600	-1.32095000	1.32676300
C	0.41599600	-0.61139100	2.42455500
H	1.71389200	-2.52784800	4.95496500
H	2.58024800	-3.79333900	2.96500900
H	0.69576600	-1.00361700	0.31033300
0	1.05063800	0.71102700	5.71111000
0	-1.05063800	-0.71102700	5.71111000
N	-2.20490400	3.21218900	0.43324200
C	-3.41817300	2.80997000	-0.16819400
C	-1.38543000	4.15332000	-0.22842100
C	-3.99049200	1.55850700	0.11293900
C	-4.05181000	3.68349900	-1.07655400
C	-1.97934400	5.05171400	-1.13974300
C	0.00000000	4.20164500	-0.00265600
C	-5.16395100	1.16117400	-0.52141100
H	-3.51492400	0.89256400	0.82224800
C	-5.21595900	3.24707600	-1.71733200
C	-3.51486100	5.11862200	-1.21522000

C	-1.15073100	5.93292500	-1.84202100
H	0.45676200	3.52797100	0.71164500
C	0.79637800	5.10765900	-0.69727000
C	-5.77605200	1.99765700	-1.45259900
H	-5.58926600	0.18889400	-0.29072800
H	-5.70415300	3.91194300	-2.42072400
C	-3.96114900	5.73668700	-2.56094600
C	-4.03710600	5.96281500	-0.00747800
C	0.22773800	5.96839000	-1.63380200
H	-1.60124800	6.62069400	-2.54850100
H	1.86576100	5.12753100	-0.50883100
H	-6.68685700	1.69213500	-1.95762300
C	-3.59124500	5.09877400	-3.75852800
C	-4.71425400	6.91173500	-2.64802800
C	-3.28313100	7.02415500	0.51466600
C	-5.29665100	5.71433300	0.55800800
H	0.84325800	6.67149500	-2.18581200
C	-3.96244800	5.61698400	-4.99579700
H	-3.00518300	4.18598500	-3.71416700
C	-5.08850600	7.43476100	-3.89075900
H	-5.01443500	7.42899900	-1.74464200
C	-3.76881100	7.80747400	1.56303800
H	-2.30386600	7.24233700	0.10452400
C	-5.78410600	6.49639200	1.60624900
H	-5.90448800	4.89953500	0.18183900
C	-4.71589200	6.79219300	-5.06803400
H	-3.66325600	5.10344600	-5.90513000
H	-5.67385500	8.34904700	-3.92954000
C	-5.02204400	7.54709800	2.11655900
C	-3.16021700	8.62095300	1.94803100
H	-6.76232400	6.27770000	2.02533300
H	-5.00675300	7.19862000	-6.03230300
H	-5.39885700	8.15311900	2.93535700
H	2.20490400	-3.21218900	0.43324200
N	3.41817300	-2.80997000	-0.16819400
C	1.38543000	-4.15332000	-0.22842100
C	3.99049200	-1.55850700	0.11293900
C	4.05181000	-3.68349900	-1.07655400
C	1.97934400	-5.05171400	-1.13974300
C	0.00000000	-4.20164500	-0.00265600
C	-3.24707622000	-1.7173900	-1.21522000

C	1.15073100	-5.93292500	-1.84202100
H	-0.45676200	-3.52797100	0.71164500
C	-0.79637800	-5.10765900	-0.69727000
C	5.77605200	-1.99765700	-1.45259900
H	5.58926600	-0.18889400	-0.29072800
H	5.70415300	-3.91194300	-2.42072400
C	3.96114900	-5.73668700	-2.56094600
C	4.03710600	-5.96281500	-0.00747800
C	-0.22773800	-5.96839000	-1.63380200
H	1.60124800	-6.62069400	-2.54850100
H	-1.86576100	-5.12753100	-0.50883100
H	6.68685700	-1.69213500	-1.95762300
C	3.59124500	-5.09877400	-3.75852800
C	4.71425400	-6.91173500	-2.64802800
C	3.28313100	-7.02415500	0.51466600
C	5.29665100	-5.71433300	0.55800800
H	-0.84325800	-6.67149500	-2.18581200
C	3.96244800	-5.61698400	-4.99579700
H	3.00518300	-4.18598500	-3.71416700
C	5.08850600	-7.43476100	-3.89075900
H	5.01443500	-7.42899900	-1.74464200
C	3.76881100	-7.80747400	1.56303800
H	2.30386600	-7.24233700	0.10452400
C	5.78410600	-6.49639200	1.60624900
H	5.90448800	-4.89953500	0.18183900
C	4.71589200	-6.79219300	-5.06803400
H	3.66325600	-5.10344600	-5.90513000
H	5.67385500	-8.34904700	-3.92954000
C	5.02204400	-7.54709800	2.11655900
H	3.16021700	-8.62095300	1.94803100
H	6.76232400	-6.27770000	2.02533300
H	5.00675300	-7.19862000	-6.03230300
H	5.39885700	-8.15311900	2.93535700
S	0.00000000	0.00000000	4.96917300

S-6 Supplementary Photophysical Property

Figure S9. (a) Fluorescent images of DPAC-DBDTO in different solvents upon excitation with a 365 nm light source (from a to d are hexane (HEX), ethyl ether (ETE), tetrahydrofuran (THF) and acetonitrile (ACN), respectively; (b) Fluorescence spectra of DPAC-DBTDO in different solvents with the concentration of 0.01 mM ; (c) Absorption spectra of DPAC-DBTDO in different solvents with the concentration of 0.01 mM .

Figure S10. (a) Transient PL spectrum of DPAC-DBTDO in toluene at 77 K (b) Steady state spectrum of DBTDO core in toluene at room temperature and 77 K .

Figure S11. Transient PL spectrum of $15 \mathrm{wt} \%$ DPAC-DBTDO:DPEPO doped film at 300 K .

Figure S12. (a) Fluorescence spectra of DPAC-DBTDO in tetrahydrofuran and water mixtures; (b) Changes in the maximum emission intensity of DPAC-DBTDO versus the volume fraction of water in the mixtures of tetrahydrofuran and water.

Figure S13. (a) Temperature dependence of transient PL decay of $15 \mathrm{wt} \%$ DPAC-DBTDO:DPEPO doped film in the time range of 10 ms ; (b) Extracted transient PL decay of $15 \mathrm{wt} \%$ DPACDBTDO:DPEPO doped film at 80 K and 290 K .

Table S3. Fitting results of the transient PL decay of $15 \mathrm{wt} \%$ DPAC-DBTDO:DPEPO doped film in the time range of $10 \mathrm{~ms}(80 \mathrm{~K}$ to 290 K$)$.

	t1 (ns)	t2 ($\mu \mathrm{s}$)	r3 ($\mu \mathrm{s}$)	x^{2}
80 K	26.32	237.6	1957	1.569
110 K	28.37	242.7	1775	1.331
140 K	26.14	231.7	1885	1.454
170 K	24.27	212.3	1959	1.330
200 K	27.15	207.1	1587	1.208
230 K	27.38	202.4	1675	1.501
260 K	26.06	219.6	1632	1.311
290 K	30.41	246.6	1717	1.394

Table S4. Photophysics properties of DPAC-DBTDO.

$\begin{aligned} & \lambda_{\text {Abs }}{ }^{a} \\ & (\mathrm{~nm}) \end{aligned}$	$\lambda_{\text {PL }}$ (nm)		$\begin{aligned} & \Phi_{f}{ }^{c} \\ & (\%) \end{aligned}$	$\Phi_{f}{ }^{\text {d }}$ (\%)				$\begin{gathered} E_{g}{ }^{2} \\ (e V) \end{gathered}$	HOMO/LUMO (eV)
	doped film ${ }^{\text {b }}$	neat film		HEX	ETE	THF	ACN		
291, 320	486	498	100	2.4	4.2	2.7	n.o. ${ }^{\text {e }}$	2.68	-5.43/-2.44

${ }^{\text {a }}$ Absorption: measured in neat film. ${ }^{\text {b }} 5 \mathrm{wt} \%$ PMMA doped film. ${ }^{\text {c Photoluminescent quantum }}$ yield by integrating sphere of a 15 wt\% DPEPO doped film. ${ }^{\text {d }}$ Relative fluorescence quantum yield [estimated by using quinine sulfate as standard ($\Phi_{f}=54.6 \%$ in 0.1 M sulfuric acid solution)]. ${ }^{e}$ n.o. $=$ not observed. ${ }^{\boldsymbol{f}}$ Optical gap calculated from the absorption onset of neat film. ${ }^{\mathbf{g}}$ Measured by cyclic voltammetry.

S-7 Electroluminescence Property

Figure S14. OLED structure and the molecular structures of compounds used in device.

Figure S15. (a) and (b) EL spectra of device A and device B under different voltage, respectively; (c) luminance-voltage-current characteristics of device A and device B. D evice A: ITO/HATCN (6 nm)/NPB $(30 \mathrm{~nm}) / \mathrm{mCP}(10 \mathrm{~nm}) / D P A C-D B T B O: \operatorname{DPEPO}(15: 85)(30 \mathrm{~nm}) / D P E P O(10 \mathrm{~nm}) / T m P y P B$ $(10 \mathrm{~nm}) /$ TPBi $(35 \mathrm{~nm}) / \mathrm{LiF}(1 \mathrm{~nm}) / \mathrm{Al}(120 \mathrm{~nm})$; Device B: ITO/HATCN $(6 \mathrm{~nm}) /$ NPB $(30 \mathrm{~nm}) / \mathrm{mCP}(10$ $\mathrm{nm}) / \mathrm{mCP}:$ DPAC-DBTDO $15 \mathrm{wt} \%(5 \mathrm{~nm})$; DPEPO : DPAC-DBTDO $15 \mathrm{wt} \%(25 \mathrm{~nm}) /$ DPEPO (10 $\mathrm{nm}) / T m P y P B(10 \mathrm{~nm}) /$ TPBi $(35 \mathrm{~nm}) / \mathrm{LiF}(1 \mathrm{~nm}) / \mathrm{Al}(120 \mathrm{~nm})$.

Table S5. EL performance of the devices

device	$V_{\text {on }}{ }^{\text {a }}$ (V)	$\begin{gathered} L_{\max }^{b} \\ (\mathrm{~cd} \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{PE}_{\max }{ }^{\mathrm{c}} \\ \left(\operatorname{lm} \mathrm{~W}^{-1}\right) \end{gathered}$	$\begin{aligned} & C E_{\max }^{d} \\ & \left(\operatorname{cd~A}^{-1}\right) \end{aligned}$	EQE (\%) ${ }^{\text {e }}$			$\begin{aligned} & \lambda_{\mathrm{EL}}{ }^{\mathrm{f}} \\ & (\mathrm{~nm}) \end{aligned}$	$\begin{aligned} & \text { CIE } \\ & (x, y) \end{aligned}$
					maximum	at 100 cd m ${ }^{-2}$	at 1000 cd m-2		
A	3.7	5580	26.1	33.6	12.3	9.5	5.3	504	(0.262,0.469)
B	3.9	5560	26.3	34.2	13.1	9.4	5.7	500	(0.252,0.455)

${ }^{\text {a }}$ Turn on voltage at a brightness of $1 \mathrm{~cd} \mathrm{~m}^{-2}$. ${ }^{\mathrm{b}}$ Maximum luminance. ${ }^{\mathrm{c}}$ Maximum power efficiency.
${ }^{\mathrm{d}}$ Maximum current efficiency. ${ }^{\mathrm{e}}$ External quantum efficiency. ${ }^{\mathrm{f}}$ EL peak.

