Epitaxial growth of two-dimensional SnSe₂/MoS₂ misfit heterostructures

Mei Zhao, Manman Liu, Youqing Dong, Chao Zou, Keqin Yang, Yun Yang, Lijie Zhang * and

Shaoming Huang *

College of Chemistry and Materials Engineering, Wenzhou University, <u>Zhejiang Key Laboratory of</u> Carbon Materials, Wenzhou 325035, China

Figure S1 Schematic illustration of the CVD system for the growth of (a) Monolayer MoS_2 triangular sheets and (b) $SnSe_2/MoS_2$ heterostrutures.

Figure S2 (a) Optical microscope image of the SnSe₂/MoS₂ heterojunctions. (b, c) Enlarged view of SEM images (SEI mode) of the area indicated by white rectangle and black rectangle, respectively. We can see the layer-by-layer stacking structures in the SEM images (SEI mode).

Figure S3 (a) Optical microscope image of monolayer MoS₂ on SiO₂/Si. (b) Optical microscope image of SnSe₂/MoS₂ bilayers on the substrate. The SnSe₂ monolayers were grown on MoS₂ via the van der Waals epitaxial growth process. (c) Atomic force microscope image of the region indicated by rectangle in (b), confirming monolayer SnSe₂ on monolayer MoS₂. (d) A typical raman spectroscopy of the SnSe₂/MoS₂ heterojunctions.

Figure S4 Optical microscope images of the SnSe₂/MoS₂ heterojunctions obtained at the relative high- (a) and low- (b) temperature zone. (c) Raman spectra collected from the different positions in (a) and (b). The ratio of peak intensity between A_{1g} of SnSe₂ and E¹_{2g} of MoS₂ indicates multilayer of the as-grown SnSe₂. The particles on SiO₂ in (b) is identified to be SnSe₂ by the Raman spectroscopy. (d) AFM image of a multilayer-SnSe₂/monolayer-MoS₂ heterojunction. The height profile shows thickness of 3.1 nm.

Figure S5 (a) An optical microscope image of a triangular MoS₂ monolayer covered partially with a SnSe₂ multilayer. Spatially resolved Raman maps for the intensity of A_{1g} of SnSe₂ (b), A_{1g} of MoS₂ (c), E¹_{2g} of MoS₂ (d), and the peak position of E¹_{2g} of MoS₂ (e), A_{1g} of MoS₂ (f).

Figure S6 The photoluminescence spectrum collected from bare MoS₂ monolayer and its fitted curves. The emission bands at 1.84 and 1.96 eV correspond to A and B exciton recombination, respectively.