Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

J. Mater. Chem. C

Supplementary Information

Investigation of the Room Temperature Gas Sensing Properties of Metal-Organic Charge Transfer Complex CuTCNQF₄

Faegheh Hoshyargar, a,† Mahnaz Shafiei, a,b,† Carlo Piloto, a,b Nunzio Motta, a,b and Anthony P.

O'Mullane*,a

- ^a School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
- ^b Institute for Future Environments, Queensland University of Technology (QUT), Brisbane QLD 4001, Australia
- * Correspondence to: anthony.omullane@qut.edu.au.
 - † Faegheh Hoshyargar and Mahnaz Shafiei contributed equally.

As-deposited CuTCNF₄ on alumina substrate

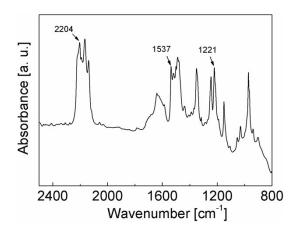
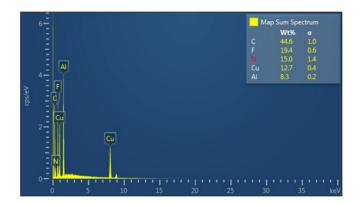
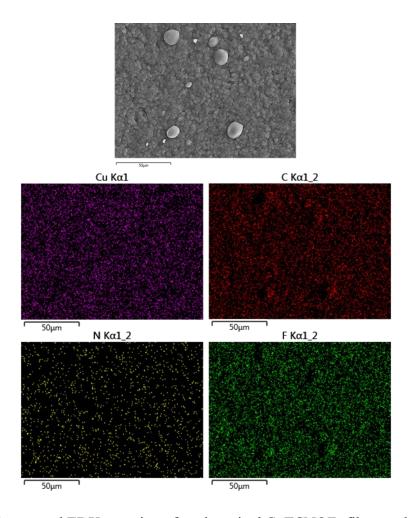
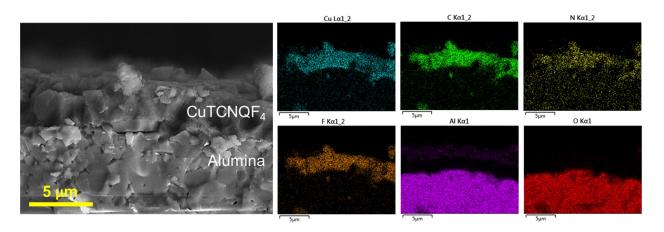
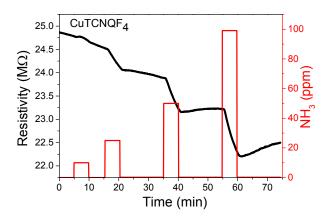
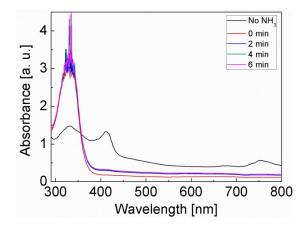


Fig. S1 FT-IR spectrum of as-deposited CuTCNQF₄ film.


Fig. S2 EDX analysis of as-deposited CuTCNQF₄ film on alumina substrate.


 $\textbf{Fig. S3} \ \text{SEM image and EDX mapping of as-deposited } CuTCNQF_4 \ \text{film on alumina substrate}.$

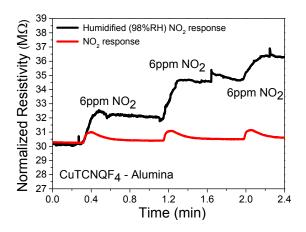
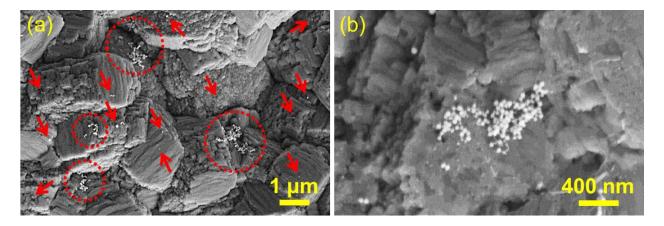
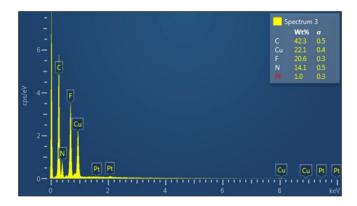

Fig. S4 SEM cross sectional image and EDX mapping of as deposited CuTCNQF₄ on alumina substrate.

Fig. S5 Dynamic response of as-deposited CuTCNQF₄ film on alumina substrate towards NH₃ with different concentrations at 25°C.


Fig. S6 Successive UV-vis absorption spectra of a solution obtained by dissolving CuTCNQF₄ in acetonitrile after adding NH₃ to the solution.


Fig. S7 Dynamic response of as-deposited CuTCNQF₄ film on alumina substrate towards dry and humidified NO₂ gas with 6 ppm concentration at 25°C.

As-deposited CuTCNF₄-Pt on alumina substrate

The CuTCNQF₄ film on the alumina substrate was decorated with Pt NPs via a simple galvanic replacement process. This approach was used previously to decorate CuTCNQ structures with Pt and Au nanoparticles and the galvanic replacement mechanism has been characterised in detail.¹⁻³ In a typical experiment, CuTCNQF₄ films were immersed in an aqueous solution of 1 mM K₂PtCl₄ for 18 h. Under these conditions there is enough thermodynamic driving force for CuTCNQF₄ to be oxidised to Cu⁺ and TCNQF₄⁰, donating electrons to the PtCl₄²⁻ ions to form Pt nanoparticles on the surface of the film. Any neutral TCNQF₄ would then react with Cu generated via the disproportionation of Cu⁺ in water to Cu⁰ and Cu²⁺ ions to regenerate CuTCNQF₄ via the reaction of Cu⁰ and TCNQF₄⁰, and therefore create a Pt decorated CuTCNQF₄ surface which is analogous to the metal nanoparticle decorated CuTCNQ system.²

Fig. S8 (a) Overview and (b) higher resolution FESEM images of as-deposited CuTCNQF₄-Pt composite film. Arrows in (a) show the location of the Pt nanoparticles.

Fig. S9 EDX analysis of CuTCNQF₄-Pt film.

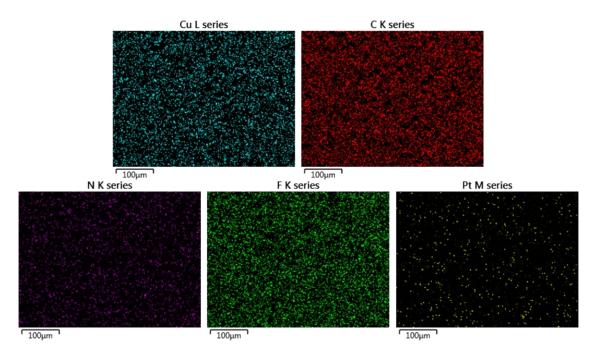
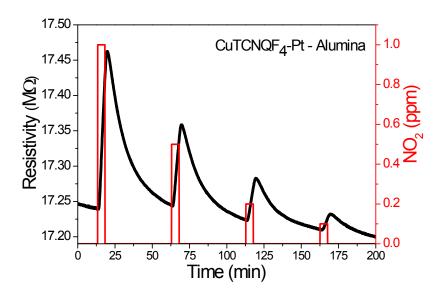



Fig. S10 EDX mapping of CuTCNQF₄-Pt film.

Fig. S11 Dynamic response of the as-deposited $CuTCNQF_4$ -Pt film on alumina substrate towards NO_2 with concentrations in the range of 0.1-1 ppm at 25°C.

Table S1. Comparison between responses of as-deposited CuTCNQF₄ and CuTCNQF₄-Pt films on alumina substrate towards NO₂ at 25°C.

	Response to NO ₂ (%)			
	0.1 ppm	0.25 ppm	0.5 ppm	1 ppm
CuTCNQF ₄	0.133	0.27	0.51	0.99
CuTCNQF ₄ -Pt	0.12	0.34	0.66	1.23

References

- 1. A. Pearson and A. P. O'Mullane, *ChemPlusChem*, 2013, **78**, 1343-1348.
- 2. A. Pearson, A. P. O'Mullane, S. K. Bhargava and V. Bansal, *Inorg. Chem.*, 2012, **51**, 8791-8801.
- 3. A. Pearson, A. P. O'Mullane, V. Bansal and S. K. Bhargava, *Inorg. Chem.*, 2011, **50**, 1705-1712.