Electronic Supplementary Information

Experimental Section

Materials: Hydrobromic acid (HBr) (48 wt.% in water), hydroiodic acid (HI) (57 wt.% in water), methylamine (CH₃NH₂) (40 wt.% in water), PbBr₂ (99%), PbI₂ (99%), N,N-dimethylformamide (DMF, 99.9%) and γ -butyrolactone (GBL, 99%) were purchased from Sigma-Aldrich and used as received without further purification.

Synthesis of CH₃NH₃X (X= Br, I) Crystals: CH₃NH₃Br was synthesized by reacting CH₃NH₂ and HBr with the molar ratio of 1.2:1. The HBr was added dropwise into the CH₃NH₂ in a flask under nitrogen atmosphere in an iced bath for 2.5 h, the resulting solution was evaporated at 60 °C in a rotary evaporator to remove the solvent. CH₃NH₃I were synthesized with the same procedure as above except by replacing the HBr using HI. The white CH₃NH₃X (X= Br, I) crystalline powder was collected using Büchner funnel filtration after being washed for three times with anhydrous ethanol and recrystallized in anhydrous diethyl ether, then dried in a vacuum oven at 60 °C overnight.

Single crystal growth process for CH₃NH₃Pb(Br_xI_{1-x})₃: To grow the dual-halide perovskite single crystals CH₃NH₃Pb(Br_xI_{1-x})₃ (x = 0~1), precursor solutions were prepared first. The solution concentration was controlled at 0.7 M in DMF for CH₃NH₃PbBr₃ and 1.3 M in GBL for CH₃NH₃PbI₃. Specifically, equimolar mixture of the CH₃NH₃Br and PbBr₂ were dissolved in DMF at 50 °C for CH₃NH₃PbBr₃, equimolar mixture of the CH₃NH₃I and PbI₂ in GBL for CH₃NH₃PbI₃. For CH₃NH₃Pb(Br_xI_{1-x})₃, measured volume of CH₃NH₃PbBr₃ (0.7 M) solution and CH₃NH₃PbI₃ (1.3 M) were mixed to form the double-halide precursor solution with desired Br:I ratio. (Supplementary Table 1). The CH₃NH₃Pb(Br_xI_{1-x})₃ solution were heated to 95 °C and maintained at the temperature until desired CH₃NH₃Pb(Br_xI_{1-x})₃ single crystals formed.

The fabrication of photodetector: Planar-type photodetectors were fabricated by depositing ~200 nm interdigital Au electrodes via vacuum evaporation on the single crystalline $CH_3NH_3Pb(Br_xI_{1-x})_3$, respectively. Each electrode consists of a group of 15 fine Au wires (2 mm in length, 50 μ m in width). The effective illumination area was controlled at ~3 mm².

Characterizations: Powder XRD patterns were collected using a Rigaku (Smartlab-9kW) X-ray diffractometer equipped with a Cu K α X-ray ($\lambda = 1.54186$ Å) tube operated at 40 kV and 30 mA. The CH₃NH₃Pb(Br_xI_{1-x})₃ powder was produced by grinding a large piece of crystal into fine powder; Vis-NIR diffuse reflectance spectrum was measured at room temperature using a Vis-NIR spectrophotometer (PerkinElmer Lambda 950) with an integrating sphere attachment operating in the 400~1000 nm region. A highly refined barium sulfate (BaSO₄) plate was used as the standard (100% reflectance); The photoresponse characteristics for the CH₃NH₃Pb(Br_xI_{1-x})₃ photodetectors were collected by a Keithley 2400 source meter under various bias voltage and LED light illumination.

The procedures to extract the bandgaps: The optical absorption coefficient (α) is alculated using reflectance data according to the Kubelka–Munk equation, $F(R) = \alpha/S = (1 - R)^2/2R$, where R is the percentage of reflected light, *S* is the scattering coefficient. The incident photon energy (hv) and the optical band gap (Eg) are related to the transformed Kubelka–Munk function, $\alpha hv^p = A(hv - Eg)^n$, where A and p are constants. As all three kinds of CH₃NH₃PbX₃ (x=Cl, Br, I) are direct-bandgap semiconductor materials, the n value is 1/2. By extrapolating the linear region of the [F(R)hv]² vs. hv curve, the intercept is shown in Fig. S2, Eg is established.¹⁻³

dual-halide perovskites	composition (x)	CH ₃ NH ₃ PbBr ₃	CH ₃ NH ₃ PbI ₃
		(0.7M)	(1.3M)
		Volume (mL)	Volume (mL)
CH ₃ NH ₃ Pb(Br _x I _{1-x)3}	0	0	15
	0.08	2	13
	0.21	5	10
	0.38	8	7
	0.52	10	5
	0.6	11	4
	0.68	12	3
	0.78	13	2
	0.87	14	1
	1	15	0

Table 1 The mixed volumetric ratio of $CH_3NH_3PbBr_3$, $CH_3NH_3PbI_3$ for the $CH_3NH_3Pb(Br_xI_{1-x})_3$ solution.

Table S2. Comparison of the photocurrent response speed of the photodetector as reported in literature and our measurements.

Material	Rise time	Fall time	Reference
CH ₃ NH ₃ PbBr ₃	70 us	150 us	46
single crystal			
CH ₃ NH ₃ PbBr ₃		25 110	17
single crystal		25 US	47
CH ₃ NH ₃ PbBr ₃	120 ms	86 ms	48
nanowires			
CH ₃ NH ₃ PbI ₃ -			
CH ₃ NH ₃ PbBr ₃	120 ms	94 ms	49
heterojunctions			
$MAPb(Br_{0.78}I_{0.22})_3$	3.4 ms	3.6 ms	Present work
single crystal			

Fig. S1. (a-j) EDX spectra of MAPb(Br_xI_{1-x})₃ (x= 0, 0.08, 0.21, 0.38, 0.52, 0.60, 0.68, 0.78, 0.87 and 1) samples. The corresponding x value was calculated using the Br K and I L shell peaks, which are shown in the inset (x= 0, 0.09, 0.19, 0.36, 0.54, 0.63, 0.70, 0.86, 0.93 and 1). (k) The correlation of the x values determined by the ratio of precursor solution between the x values determined by the EDX spectra.

Fig. S2 The K-M plots with the tangent line to determine the bandgap.

Fig. S3 Photocurrent response measured at 3 V bias for 25 cycles under the illumination (460 nm, 7.96 mW cm^{-2}) switched on and off.

references

- 1 1 T. J. McCarthy, T. A. Tanzer and M. G. Kanatzidis, J. Am. Chem. Soc., 1995, 117, 1294-1301.
- 2 H. Lin, C. Huang, W. Li, C. Ni, S. Shah and Y. Tseng, Applied Catalysis B: Environmental, 2006, 68, 1-11.
- 3 S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu and G. Cui, *Chem. Mater.* 2014, 26, 1485-1491.