Supporting Information for

Morphology-controlled self-assembly of ferroceneporphyrin based NO₂ gas sensor: tuning the semiconducting nature *via* solvent-solute interaction

Peihua Zhu,*a Feifei Song,^a Pan Ma,^{ab} Yucheng Wang,^a Changlong Chen^a and Jijun Feng^a

^aKey Laboratory of Chemical Sensing & Analysis in University of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China ^bJinan Academy of agricultural Sciences, Jinan, 250316, PR China

Fig. S1 MALDI-TOF mass spectrum of H_2PorFc .

Fig. S2 ¹H NMR spectrum of H₂PorFc in CDCl_{3.}

Fig. S3 FT-IR spectrum of the H_2FcPor powder (black line), H_2PorFc nanospheres (red line) and H_2PorFc nanobelts (blue line).

Fig. S4 Nanospheres formed from H_2PorFc in methanol observed by transmission electron microscopy (TEM).

Fig. S5 EDXS spectrum of the H_2PorFc nanospheres (A) and H_2PorFc nanobelts (B).

Fig. S6 The cycling response curves of the nanospheres (A) and the nanobelts (B) to NO_2 at the concentration of 50 ppm.

Fig. S7 Long-term stability of the H_2FcPor nanospheres sensor (black line) and H_2FcPor nanobelts sensor (red line) to 50 ppm NO₂.

Fig. S8 Selectivities of H₂FcPor nanobelts to various gases.

Fig. S9 Selectivities of H₂FcPor nanospheres to various gases.

	ferrocene			Porphyrin		
Compound	Ord (V)	Oxd ₂	Oxd ₁	Dad (V)	UOMO	LUMO
	Oxu(V)	(V)	(V)	$\operatorname{Ked}_{1}(\mathbf{v})$	помо	LUMO
H ₂ FcPor	0.51	1.46	0.86	-0.45	-5.30	-3.99

Table S1 Half-Wave Redox Potentials (V) of H_2FcPor in CH_2Cl_2 Containing 0.1 M $[Bu_4N][ClO_4]$ and the HOMO, LUMO levels of H_2PorFc at room temperature.

Table S2 Electronic absorption spectral data for H_2PorFc dissolved in CHCl₃, its self-assemblies nanostructures formed in *n*-hexane and in methanol.

Compound	λmax/nm			
	Soret	Q band		
H ₂ FcPor solution	419	515, 551, 592, 645		
H ₂ PorFc/ <i>n</i> -hexane	442	524, 559, 599, 654		
H ₂ PorFc/CH ₃ OH	426	525, 560, 599, 655		