Electronic Supplementary Information

Ultra-Narrow-Bandgap Thienoisoindigo Polymers: Structure–Property Correlations in Field-Effect Transistors

Gyoungsik Kim,[‡]^a Hyoeun Kim,[‡]^b Moonjeong Jang,^{a,b} Yun Kyung Jung,^a Joon Hak Oh^{*b} and Changduk Yang^{*a}

^{*a*}Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea.

^bDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea.

[‡]These authors contributed equally.

*E-mail: joonhoh@postech.ac.kr and yang@unist.ac.kr

Table of Contents
Instrumentation details
 ¹H NMR spectra of PTIIG-based polymers
• GPC result of PTIIG-based polymers

S3~S4

S5

 GPC result of PTIIG-based polymers 	S6~S7
 GIXD images and profiles of PTIIG-based polymer films 	S8~S9
 Mobility distributions based on various temperature 	S10
• OFETs characteristics of PTIIG-based polymer films by solution- shearing method	S10
• OFETs characteristics of PTIIG-based polymer films by drop-casting method with Au electrodes	S11
• OFETs characteristics of PTIIG-based polymer films by solution- shearing method with Al electrodes	S12

Instrumentations: ¹H NMR spectra were recorded on a Varian VNRS 400 MHz (Varian USA) spectrophotometer using CDCl₃ as solvent and tetramethylsilane (TMS). UV-Vis-NIR spectra were taken on Cary 5000 (Varian USA) spectrometer. Number-average (M_n) and polydispersity indices (PDI) of the polymer products were determined by high temperature gel-permeation chromatography (HT-GPC) with a FUTECS NS-4000 using a series of mono disperse polystyrene standards in 1,2,4-trichlorobenzene (TCB, HPLC grade) at 120 °C. Cyclic voltammetry (CV) measurements were performed on AMETEK VersaSTAT 3 with a three-electrode cell in a nitrogen bubbled 0.1 M tetra-n-butylammonium hexafluorophosphate $(n-Bu_4NPF_6)$ solution in acetonitrile at a scan rate of 0.1 V/s at room temperature. Ag/Ag⁺ (0.01 M of AgNO₃ in acetonitrile) electrode, platinum wire and polymer coated glassy carbon electrode were used as the reference electrode, counter electrode and working electrode, respectively. The Ag/Ag⁺ reference electrode was calibrated using a ferrocene/ferrocenium redox couple as an external standard, whose oxidation potential is set at -4.8 eV with respect to zero vacuum level. The HOMO energy levels were obtained from the equation HOMO=- $(E_{ox}^{onset} - E_{(ferrocene)}^{onset} + 4.8)$ eV. The LUMO levels of polymers were obtained from the equation LUMO= $-(E_{red}^{onset} - E_{(ferrocene)}^{onset} + 4.8)$ eV.

AFM Characterization: Agilent 5500 scanning probe microscope (SPM) running with a Nanoscope V controller was used to obtain AFM images of polymer films. AFM images were recorded in high-resolution tapping mode under ambient conditions. Premium silicon cantilevers (TESP-V2) were used with a rotated tip to provide more symmetric representation of features over 200 nm.

GIXD Characterization: Grazing incidence X-ray diffraction (GIXD) measurements were conducted at PLS-II 9A U-SAXS beamline of the Pohang Accelerator Laboratory in Korea. The X-rays coming from the in-vacuum undulator (IVU) are monochromated (wavelength λ = 1.10994 Å) using a double crystal monochromator and focused both horizontally and vertically (450 (H)×60 (V) μ m² in FWHM @ sample position) using K-B type mirrors. The GIXD sample stage is equipped with a 7-axis motorized stage for the fine alignment of sample, and the incidence angle of X-ray beam was set to be 0.120° to 0.135° for TIIG-based polymer films. GIXD patterns were recorded with a 2D CCD detector (Rayonix SX165) and X-ray irradiation time was 6–9 s, dependent on the saturation level of the detector. Diffraction angles were calibrated with a pre-calibrated sucrose (Monoclinic, P21, *a* = 10.8631 Å, *b* = 8.7044 Å, *c* = 7.7624 Å, β = 102.938°), and the sample-to-detector distance was ~231 mm.

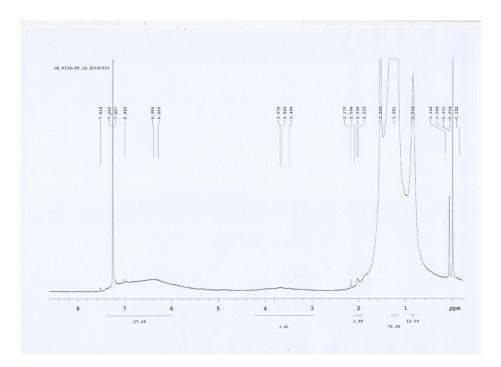


Figure S1. ¹H NMR result of PTIIG-TT.

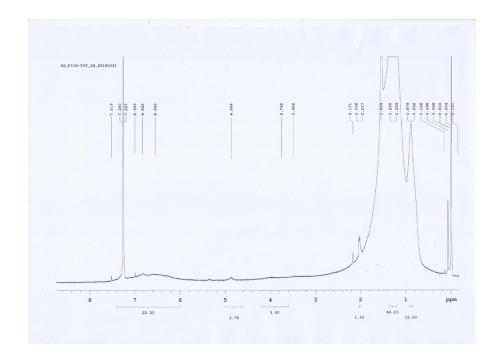


Figure S2. ¹H NMR result of PTIIG-TVT.

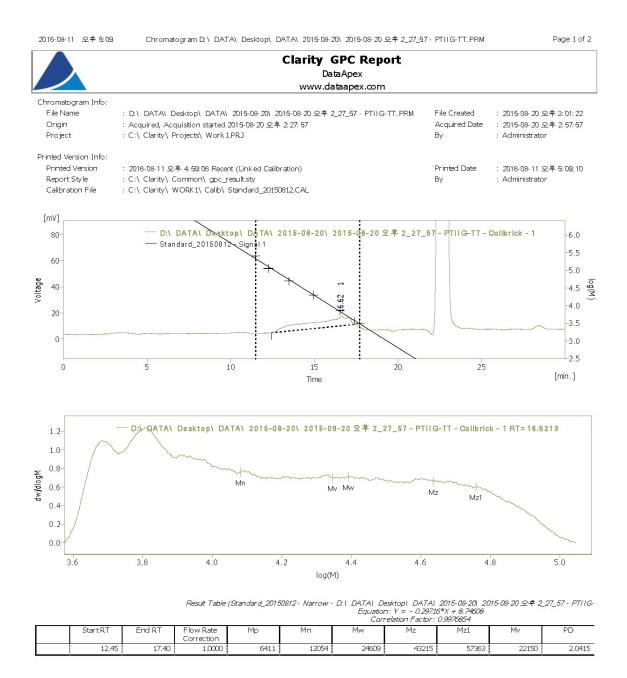
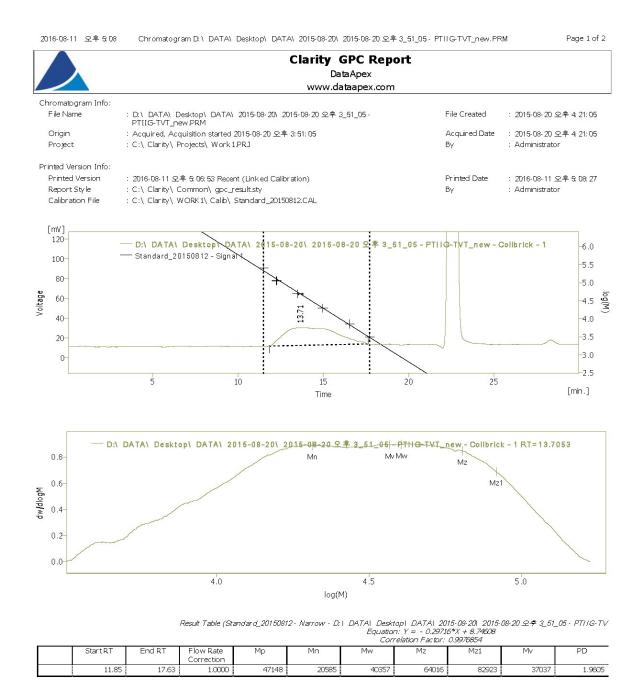
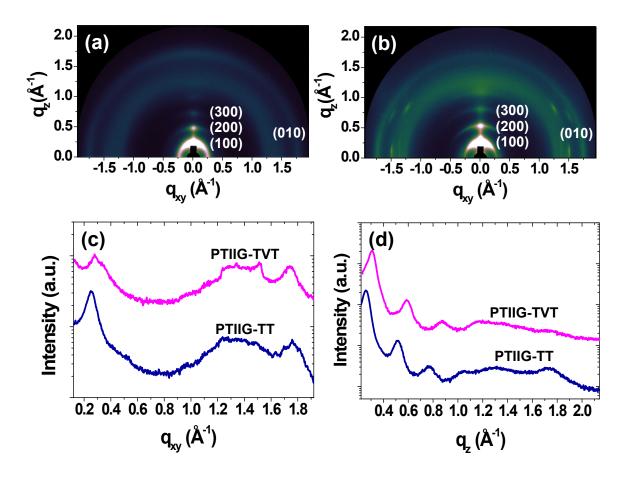
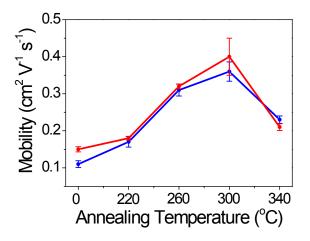
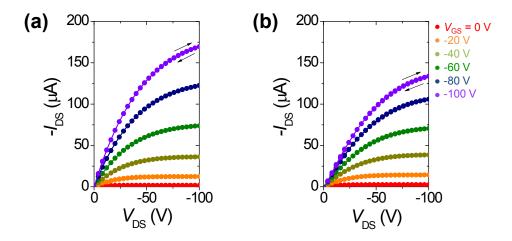


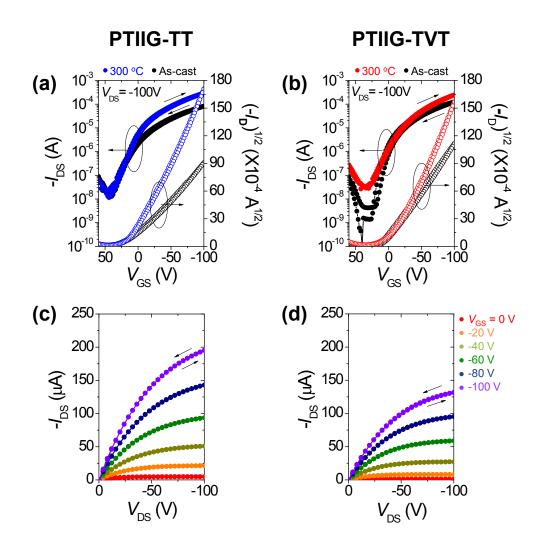
Figure S3. GPC result of PTIIG-TT


Figure S4. GPC result of PTIIG-TVT


Figure S5 GIXD images of solution-sheared TIIG-based polymer films: (a) **PTIIG-TT** and (b) **PTIIG-TVT**. The corresponding GIXD diffractogram profiles: (c) in-plane and (d) out-of-plane GIXD patterns.

Annealing Temperature	Crystallographic parameters		Crystallographic parameters PTIIG-TT	
As-cast		q (Å-1)	0.2843	0.3101
	(100)	d-spacing (Å)	22.10	20.26
		FWHM (Å-1)	0.0655	0.0760
		Coherence length (Å)	86.4	74.4
	π-π stacking	q (Å-1)	1.7442	1.7483
		d-spacing (Å)	3.60	3.59
Annealing at 300 °C	(100)	q (Å-1)	0.2933	0.3022
		d-spacing (Å)	21.42	20.79
		FWHM (Å-1)	0.0317	0.0268
		Coherence length (Å)	178.4	211.1
	π-π	q (Å-1)	1.7423	1.7590
	stacking	d-spacing (Å)	3.61	3.57


Table S1 Crystallographic parameters calculated from GIXD profiles.

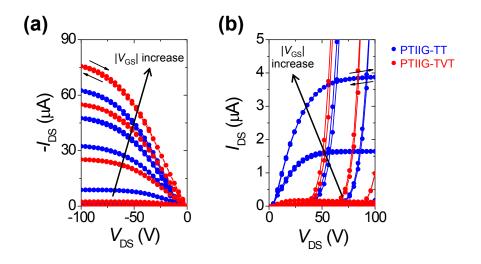

Figure S6 Average hole mobility distributions of solution-sheared TIIG-based polymer films based on various annealing temperatures.

Figure S7 Output characteristics of PTIIG-based polymer films fabricated by solutionshearing method: (a) **PTIIG-TT** and (b) **PTIIG-TVT**.

Figure S8 Current-voltage (*I-V*) characteristics of OFET devices of PTIIG-based polymer films fabricated by drop-casting method, with Au electrodes: (a, c) **PTIIG-TT** and (b, d) **PTIIG-TVT**.

Figure S9 Output characteristics of OFETs with Al electrodes based on solution-sheared TIIG-based polymer films annealed at 300 °C: (a) hole-enhancement operation, $V_{\rm DS} = -100$ V and (b) electron-enhancement operation, $V_{\rm DS} = +100$ V.