Electronic Supplementary Information (ESI) for

Lightweight Conductive Porous Graphene/Thermoplastic Polyurethane Foams with Ultrahigh Compressibility for Piezoresistive Sensing

Hu Liu,^{1,2} Mengyao Dong,¹ Wenju Huang,¹ Jiachen Gao,¹ Kun Dai,^{1,*} Jiang Guo,² Guoqiang Zheng,¹ Chuntai Liu,^{1,*} Changyu Shen,¹ and Zhanhu Guo^{2,*}

¹ College of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China

> ² Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA

> > *: Correspondence authors

E-mail addresses: <u>kundai@zzu.edu.cn</u> (K. D.), <u>ctliu@zzu.edu.cn</u> (C. L.), <u>zguo10@utk.edu</u> (Z. G.)

1. Calculation of graphene volume fraction

The graphene volume fraction is calculated based on the following equation:

$$V_G = \rho_{th} \times W_G / \rho_G$$

where where V_G and W_G are the volume and weight fraction of graphene, respectively, ρ_G is the true density of graphene, which is assumed to be 2.2 g/cm³, and ρ_{th} is the density of the porous graphene/TPU nanocomposites obtained from the following equation:

$$\rho_{th} = m/V$$

where m and V are measured weight and volume of the fabricated foam in natural state respectively.

Fig. S1 Compression stress-strain curves of porous graphene/TPU foam with graphene loading of 0.1 vol%.

Fig. S2 Responsivity of porous graphene/TPU foam with 0.1 vol% at the end of each strain under stepwise application of cyclic compression under the compression rate of 5 mm·min⁻¹.