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Figure S1. Raman spectra of layered SnS2 with various thickness. With the thickness of the samples decreasing, the Eg mode at 210 cm-1
become undetectable.

As shown in Figure S1, the peak at 514 cm™ is a 300nm SiO, Raman peak of SiO,/Si substrate, and the comparison
of this Si0, Raman peak with 313 cm! can qualitatively shows the thickness of SnS, samples. With the thickness of
the sample decreasing, the E; mode at 210 cm! become undetectable. This can be attributed by the reduction of
scattering centers for E; mode with the thickness decrement of SnS, sample, which is in accordance with the

previous reports?3,

Table S1 Compositions and lattice parameter ¢ of SnSe;(1.4S alloys

. Atomic % from XPS XRD
x value in SnSey1.S
predecessor Sn3d Se3d S X' =52p /(Se3d+ S2p) 26 of (001) peak c-axis dypaing (A)
1 8.66 18.45 0 1 15.11 5.86
0.75 18.14 10.85 27.99 0.72 14.91 5.94
0.5 14.67 13.59 15.9 0.54 14.64 6.04
0.25 10.32 15.28 4.74 0.24 14.56 6.08

0 20.73 0 42.76 0 14.54 6.09
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Figure S2 Sn 3d XPS spectra of bulk SnSe2(1-x)S2x samples.

Figure S3. Naked HRTEM image of figure 3c which clearly shows three different level of brightness that presents different

atoms for Sn, Se, and S in the alloy.

Computational methods

All the first-principles calculations in this work are performed by using the projector augmented wave
(PAW)* > formalism within the frame work of density functional theory (DFT) in the Vienna ab initio Simulation
Package (VASP)®. The generalized gradient approximation (GGA) of Perdew, Burke and Ernzerhof (PBE) functional’
is adopted for electron exchange and correlation. A vacuum layer of no less than 15 A is used to eliminate the
interaction between adjacent images. The cutoff energy for the plane-wave basis set is set to 450 eV. A (
15 x 15 x 1) Monkhorst-Pack k-point grid? is used to sample the first Brillouin zone of SnS, and SnSe; unitcells.

Supercells consisting of 4 X 4 ynit cells is constructed to simulate SnS,Se; (1 alloys with different concentrations.



The Brillouin zones of all the SnS,Sey1.q supercells are sampled with a (5 X5 X 1) for relaxations. All the

structures are fully relaxed with a force tolerance of 0.02 eV/A.
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Figure S4. The lattice constant of SnSe;(;1.,S« alloy with S concentration that obtained from theoretical model.
As seen in Figure S4, the lattice constant value of SnSeS (x=0.5) model is about 0.378nm, which matches very well

with the value measured from HRTEM image.
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Figure S5. Calculated projected band structure of the different SnSe;(;.4Sx (a) x= 0.25 and (b) x=0.75 alloys. The blue and pink dots in the
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Figures denote the bands dominated by SnS, and SnSe,, respectively.
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Figure S6. Transfer curves (Isd h Vg) and output curves Usa-Vsa) of SnSe, (1S« FETs for (a, ¢) x=0.75 and (b, d) x=0.25.

SnSe,(1Sax FETs with x=0.25 and 0.75 are fabricated, the output and transfer curves of which are shown in Figure

S4. The field-effect mobility and ‘ON/OFF’ ratio of them are all calculated and shown in Table 2.
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