Electronic Supplementary Information

Composition-tunable 2D SnSe_{2(1-x)}S_{2x} alloys towards efficient

bandgap engineering and high performance (opto)electronics

Yan Wang,^a Le Huang, ^a Bo Li, ^a Jimin Shang,^a Congxin Xia,^b Chao Fan,^c Hui-Xiong Deng,^a Zhongming Wei,^{a, *} and Jingbo Li^{a, *}

^{a.} State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083,

China. *E-mail: zmwei@semi.ac.cn, jbli@semi.ac.cn

^{b.} Department of Physics, Henan Normal University, Xinxiang 453007, China.

^c School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China.

Figure S1. Raman spectra of layered SnS2 with various thickness. With the thickness of the samples decreasing, the Eg mode at 210 cm-1 become undetectable.

As shown in **Figure S1**, the peak at 514 cm⁻¹ is a 300nm SiO₂ Raman peak of SiO₂/Si substrate, and the comparison of this SiO₂ Raman peak with 313 cm⁻¹ can qualitatively shows the thickness of SnS₂ samples. With the thickness of the sample decreasing, the E_g mode at 210 cm⁻¹ become undetectable. This can be attributed by the reduction of scattering centers for E_g mode with the thickness decrement of SnS₂ sample, which is in accordance with the previous reports¹⁻³.

Table S1 Compositions and lattice parameter c of $SnSe_{2(1-x)}S_{2x}$ alloys						
x value in SnSe _{2(1-x)} S _{2x} \Box	Atomic % from XPS				XRD	
	Sn3d	Se3d	S	x' =S2p /(Se3d+ S2p)	20 of (001) peak	c-axis d _{spacing} (Å)
1	8.66	18.45	0	1	15.11	5.86
0.75	18.14	10.85	27.99	0.72	14.91	5.94
0.5	14.67	13.59	15.9	0.54	14.64	6.04
0.25	10.32	15.28	4.74	0.24	14.56	6.08
0	20.73	0	42.76	0	14.54	6.09

Figure S2 Sn 3d XPS spectra of bulk SnSe2(1-x)S2x samples.

Figure S3. Naked HRTEM image of figure 3c which clearly shows three different level of brightness that presents different atoms for Sn, Se, and S in the alloy.

Computational methods

All the first-principles calculations in this work are performed by using the projector augmented wave (PAW)^{4, 5} formalism within the frame work of density functional theory (DFT) in the Vienna ab initio Simulation Package (VASP)⁶. The generalized gradient approximation (GGA) of Perdew, Burke and Ernzerhof (PBE) functional⁷ is adopted for electron exchange and correlation. A vacuum layer of no less than 15 Å is used to eliminate the interaction between adjacent images. The cutoff energy for the plane-wave basis set is set to 450 eV. A ($15 \times 15 \times 1$) Monkhorst-Pack *k*-point grid⁸ is used to sample the first Brillouin zone of SnS₂ and SnSe₂ unitcells. Supercells consisting of 4×4 unit cells is constructed to simulate SnS_{2x}Se_{2(1-x)} alloys with different concentrations.

The Brillouin zones of all the $SnS_{2x}Se_{2(1-x)}$ supercells are sampled with a ($5 \times 5 \times 1$) for relaxations. All the structures are fully relaxed with a force tolerance of 0.02 eV/Å.

Figure S4. The lattice constant of $SnSe_{2(1-x)}S_{2x}$ alloy with S concentration that obtained from theoretical model. As seen in Figure S4, the lattice constant value of SnSeS (x=0.5) model is about 0.378nm, which matches very well with the value measured from HRTEM image.

Figure S5. Calculated projected band structure of the different $SnSe_{2(1-x)}S_{2x}$ (a) x = 0.25 and (b) x = 0.75 alloys. The blue and pink dots in the Figures denote the bands dominated by SnS_2 and $SnSe_2$, respectively.

Figure S6. Transfer curves $\binom{I_{sd} - V_g}{g}$ and output curves $\binom{I_{sd} - V_{sd}}{g}$ of SnSe_{2(1-x)}S_{2x} FETs for (a, c) x=0.75 and (b, d) x=0.25.

 $SnSe_{2(1-x)}S_{2x}$ FETs with x=0.25 and 0.75 are fabricated, the output and transfer curves of which are shown in **Figure S4**. The field-effect mobility and 'ON/OFF' ratio of them are all calculated and shown in **Table 2**.

References:

- 1. X. Zhou, Q. Zhang, L. Gan, H. Q. Li and T. Y. Zhai, Adv. Funct. Mater., 2016, 26, 4405-4413.
- J. H. Ahn, M. J. Lee, H. Heo, J. H. Sung, K. Kim, H. Hwang and M. H. Jo, *Nano Lett.*, 2015, 15, 3703-3708.
- 3. S. D. Lei, L. H. Ge, Z. Liu, S. Najmaei, G. Shi, G. You, J. Lou, R. Vajtai and P. M. Ajayan, *Nano Lett.*, 2013, **13**, 2777-2781.
- 4. G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 5. P. E. Blochl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 6. G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758-1775.
- 7. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865-3868.
- 8. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.