Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Unique pure barium titanate foams with three-dimensional interconnecting pore channels and their high-*k* cyanate ester resin composites at very low barium titanate loading

Longhui Zheng, Guozheng Liang*, Aijuan Gu*, Li Yuan, Qingbao Guan

State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Department of Materials Science and Engineering College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China

*To whom all correspondence should be addressed Tel: +86 512 65880967 Fax: +86 512 65880089 Email: lgzheng@suda.edu.cn (Guozheng Liang), ajgu@suda.edu.cn (Aijuan Gu).

Fig. S1 Digital photos of green bodies (top) and sintered FCs (bottom) at 1200 °C (a: BTF3, b: BTF4, c: BTF5, d: BTF6).

Filler ^{b)}	Filler loading (vol%)	Polymer matrix ^{c)}	Dielectric constant	Frequency (Hz)	Refer
BCZT	61	PVDF	100	1000	[S1]
BSCT	33	PVDF	\sim 50	100	[S2]
BST	55	PVDF	89	100	[S3]
BST	50	P(VDF-TrFE)	\sim 76	100	[S4]
BST	40	P(VDF-CTFE)	70	1000	[S5]
BST	40	P(VDF-CTFE)	\sim 50	100	[S6]
BT	50	CE	$\sim \! 26$	100	[S7]
BT	40	CR-S	$\sim \! 80$	100	[S8]
BT	50	ENR-50	\sim 50	1000	[S9]
BT	60	epoxy	$\sim \! 40$	1000	[S10]
BT	40	epoxy	44	100	[S11]
BT	40	epoxy	~ 30	100	[S12]
BT	50	EVM	\sim 14.2	100	[S13]
BT	50	PES	\sim 63	100	[S14]
BT	45	PFCB	\sim 33	1000	[S15]
BT	50	PI	\sim 37	100	[S16]
BT	50	PI	<35	1000	[S17]
BT	50	PI	\sim 24	1000	[S18]
BT	60	PVDF	$\sim \! 100$	100	[S19]
BT	55	PVDF	$\sim \! 60$	1000	[S20]
BT	50	PVDF	\sim 78	100	[S21]
BT	50	PVDF	53.9	1000	[S22]
BT	50	PVDF	\sim 52	1000	[S23]
BT	45	PVDF	\sim 57	100	[S24]
BT	40	PVDF	~51	1000	[S25]
BT	40	PVDF	\sim 50	1000	[S26]
BT	40	PVDF	~45	1000	[S27]
BT	40	PVDF	\sim 70	100	[S28]
BT	40	PVDF	${\sim}40$	100	[S29]
BT	40	PVDF	\sim 38	1000	[S30]
BT	30	PVDF	$\sim \! 28$	100Hz	[S31]
BT	30	PVDF	22.02	1000	[S32]
BT	40	P(VDF-CTFE)	<80	100	[\$33]
BT	50	PVDF-HFP-GMA	~43	1000	[S34]
BT	40	P(VDF-TrFE)	70	1000	[\$35]
BT	30	P(VDF-TrFE-CTFE)	\sim 55	1000	[S36]

 Table S1 Dielectric constants of ceramic/polymer composites ^{a)}

Filler	Filler loading (vol%)	Polymer matrix	Dielectric constant	Frequency (Hz)	Refer
BT NWs	30	PVDF	<45	1000	[S37]
BT-OPA	50	P(VDF-HFP)	~ 25	120	[S38]
BT-PFBPA	50	P(VDF-HFP)	37 ± 2	1000	[S39]
BT-TDPA	40	PVDF	74.9	100	[S40]
BT@TiO ₂	40	P(VDF-HFP)	~73	1000	[S41]
CCTO Semi	40	PVDF	$2.49 imes 10^6$	100	[S42]
ССТО	55	PVDF	95	100	[S43]
ССТО	40	PVDF	35	100	[S42]
ССТО	30	PVDF	90	100Hz	[S44]
ССТО	50	P(VDF-HFP)	<30	120	[S45]
ССТО	40	epoxy	50	100	[S46]
ССТО	40	PI	49	100	[S47]
ССТО	40	silicone resin	$\sim \! 10$	1000	[S48]
ССТО	30	CE	~ 12	100	[S49]
CCTO-sg	50	PVDF	62.3	100	[S50]
FTN	30	PVDF	$\sim \! 100$	100	[851]
KTNO Semi	30	PVDF	${\sim}200$	1000	[852]
LTNO-0	40	PVDF	~ 90	100	[853]
LTNO-1 Semi	40	PVDF	${\sim}600$	100	[\$53]
PMN-PT	40	P(VDF-TrFE)	\sim 125	100	[854]
PMN-PT	40	P(VDF-TrFE)	37.3	1000	[855]
PSTM	50	PEKK	42	1000	[856]
PZT	70	PVDF	140	100	[S57]
PZT	40	PVDF	\sim 45	1000	[S58]
PZT	40	PVDF	$\sim \! 40$	1000	[S59]
PZT	40	PVDF	\sim 36	100	[S28]
PZT	50	P(VDF-CTFE)	80	1000	[S60]
PZT	40	Polyester resin	45	1000	[S61]
SiC	47	P(VDF-CTFE-DB)	83	100	[S62]
TiO ₂	35	PVDF	~13.5	1000	[S63]
BTF	33.5	CE	141.3 117.8	100 1000	This work

 Table S1 Continued.

a) The data of high-*k* composites are arranged, while some of them not reported directly in the references are derived from the corresponding curves, the symbol "~" is used to indicate that the datum is an approximate value.

b) BCZT: Calcium barium zirconate titanate $(Ba_{0.95}Ca_{0.05}Zr_{0.15}Ti_{0.85}O_3)$. BSCT: $(Ba_{0.5}Sr_{0.4}Ca_{0.1})TiO_3$. BST: Ba_xSr_yTiO₃.

BT: Barium titanate.

BT NWs: Barium titanate nanowires.

OPA: n-Octylphosphonic acid.

PFBPA: Pentafluorobenzyl phosphonic acid.

TDPA: 1-Tetradecylphosphonic acid.

TiO₂: Titanium dioxide.

CCTO Semi: Calcium copper titanate (CaCu₃Ti₄O₁₂) with semiconductor feature.

CCTO: CaCu₃Ti₄O₁₂.

CCTO-sg: $CaCu_3Ti_4O_{12}$ were prepared by the sol-gel method.

FTN: FeTiNbO₆.

KTNO: K_{0.05}Ti_{0.02}Ni_{0.93}O.

KTNO ^{Semi}: $K_{0.05}Ti_{0.02}Ni_{0.93}O$ with semiconductor feature.

LTNO: Li and Ti codoped NiO.

LTNO-0: LTNO sintered at 1250 °C.

LTNO-1: LTNO used without further sintering.

LTNO-1 Semi: LTNO with semiconductor feature.

PMN-PT: Lead magnesium niobate-lead titanate.

PSTM: Samarium and manganese modified lead titanate.

PZT: Lead zirconate titanate.

SiC: Silicon carbide.

BTF: Barium titanate foam ceramic.

c) PVDF: Poly(vinylidene fluoride).

P(VDF-TrFE): Poly(vinylidenefluoride-trifluoroethylene).

P(VDF-CTFE): Poly(vinylidene fluoride-chlorotrifluoroethylene).

CE: Cyanate ester.

CR-S: Cyanoethylated cellulose polymer

ENR-50: Epoxidized natural rubber with 50 mol% epoxide.

EVM: Ethylene vinyl-acetate copolymer.

PES: Polyethersulfone.

PFCB: Poly 1,1,1-triphenyl ethane perfluorocyclobutyl ether.

PI: Polyimide.

PVDF-HFP-GMA: Poly(vinylidene fluoride-cohexafluoropropylene) functionalized with glycidyl methacrylate.

P(VDF-TrFE-CTFE): Poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorotrifluoroethylene).

P(VDF-HFP): Poly(vinylidenefluoride-co-hexafluoropropylene).

PEKK: Polyetherketoneketone.

P(VDF-CTFE-DB): Poly(vinylidenefluoride-co-chlorotrifluoroethylene) with internal double bonds.

	BTFp33.5%/CE	BT33.5%/CE	BTF3(1200)/CE	BTF4(1200)/CE	BTF5(1200)/C E	BTF6(1200)/C E
R1(Ω)	7.938×10 ⁴	1.902×10 ¹²	3.558×10 ¹⁰	1.557×10 ⁹	1.185×10 ⁹	5.108×10 ⁸
C1(F)	7.339×10 ⁻¹⁰	2.233×10-11	2.408×10 ⁻¹¹	2.511×10 ⁻¹⁰	2.164×10 ⁻¹⁰	3.081×10 ⁻¹⁰
$R2(\Omega)$	9.966×10 ²⁰	1.006×10 ²⁴	1.946×10 ⁹	8.771×10 ⁸	6.870×10 ⁸	2.550×10 ⁸
C2(F)	/	/	1.326×10 ⁻¹¹	1.783×10 ⁻¹¹	2.423×10 ⁻¹¹	3.906×10 ⁻¹¹
CPE(F)	5.720×10 ⁻¹²	2.042×10-11	5.810×10 ⁻¹¹	1.258×10 ⁻¹⁰	1.005×10 ⁻¹⁰	2.125×10 ⁻¹⁰
n	0.997	0.993	0.702	0.567	0.703	0.674
Cv(F)	6.092×10 ⁻¹²	2.519×10-11	2.298×10 ⁻¹¹	2.342×10 ⁻¹¹	3.256×10-11	5.181×10 ⁻¹¹
$Rt(\Omega)$	9.966×10 ²⁰	1.006×10 ²⁴	3.753×10 ¹⁰	2.434×10 ⁹	1.872×10 ⁹	7.658×10 ⁸
Ct(F)	6.042×10 ⁻¹²	1.184×10 ⁻¹¹	1.447×10 ⁻¹¹	3.543×10 ⁻¹¹	4.498×10 ⁻¹¹	7.017×10 ⁻¹¹

Table S2 Parameters from simulating results for BTFn(1200)/CE, BTFp33.5%/CE and BT33.5%/CE composites

References

- [S1] B. C. Luo, X. H. Wang, Y. P. Wang and L. T. Li, J. Mater. Chem. A, 2014, 2, 510-519.
- [S2] E. Q. Huang, J. Zhao, J. W. Zha, L. Zhang, R. J. Liao and Z. M. Dang, J. Appl. Phys., 2014, 115, 194102.
- [S3] K. Li, H. Wang, F. Xiang, W. Liu and H. Yang, Appl. Phys. Lett., 2009, 95, 202904.
- [S4] S. U. Adikary, H. L. W. Chan, C. L. Choy, B. Sundaravel and I. H. Wilson, Compos. Sci. Technol., 2002, 62, 2161-2167.
- [S5] L. Zhang, P. Wu, Y. Li, Z. Y. Cheng and J. C. Brewer, Compos. Part B-Eng., 2014, 56, 284-289.
- [S6] P. Wu, L. Zhang and X. Shan, *Mater. Lett.*, 2015, 159, 72-75.
- [S7] F. Chao, N. Bowler, X. Tan, G. Liang and M. R. Kessler, Compos. Part A-Appl. Sci. Manuf., 2009, 40, 1266-1271.
- [S8] C. K. Chiang and R. Popielarz, Ferroelectrics, 2002, 275, 1-9.
- [S9] S. Salaeh, G. Boiteux, P. Cassagnau and C. Nakason, Int. J. Appl. Ceram. Technol., 2015, 12, 106-115.
- [S10] Z. M. Dang, Y. F. Yu, H. P. Xu and J. Bai, Compos. Sci. Technol., 2008, 68, 171-177.
- [S11] D. H. Kuo, C. C. Chang, T. Y. Su, W. K. Wang and B. Y. Lin, Mater. Chem. Phys., 2004, 85, 201-206.
- [S12] R. Ginés, R. Libanori, A. R. Studart, A. Bergamini, M. Motavalli and P. Ermanni, *Compos. Part B-Eng.*, 2015, 72, 80-86.

- [S13] X. Huang, L. Xie, P. Jiang, G. Wang and F. Liu, J. Phys. D: Appl. Phys., 2009, 42, 245407.
- [S14] F. J. Wang, W. Li, M. S. Xue, J. P. Yao and J. S. Lu, Compos. Part B-Eng., 2011, 42, 87-91.
- [S15] I. Vrejoiu, J. D. Pedarnig, M. Dinescu, S. Bauer-Gogonea and D. Bäuerle, Appl. Phys. A-Mater., 2002, 74, 407-409.
- [S16] S. H. Xie, B. K. Zhu, X. Z. Wei, Z. K. Xu and Y. Y. Xu, Compos. Part A-Appl. Sci. Manuf., 2005, 36, 1152-1157.
- [S17] B. H. Fan, J. W. Zha, D. R. Wang, J. Zhao and Z. M. Dang, Appl. Phys. Lett., 2012, 100, 092903.
- [S18] N. G. Devaraju, E. S. Kim and B. I. Lee, Microelectron. Eng., 2005, 82, 71-83.
- [S19] Y. P. Mao, S. Y. Mao, Z. G. Ye, Z. X. Xie and L. S. Zheng, J. Appl. Phys., 2010, 108, 014102.
- [S20] K. Yu, Y. Niu, Y. Zhou, Y. Bai, H. Wang and C. Randall, J. Am. Ceram. Soc., 2013, 96, 2519-2524.
- [S21] Y. H. Li, J. J. Yuan, J. Xue, F. Y. Cai, F. Chen and Q. Fu, Compos. Sci. Technol., 2015, 118, 198-206.
- [S22] K. Yu, H. Wang, Y. Zhou, Y. Bai and Y. Niu, J. Appl. Phys., 2013, 113, 034105.
- [S23] K. Yu, Y. Niu, F. Xiang, Y. Zhou, Y. Bai and H. Wang, J. Appl. Phys., 2013, 114, 174107.
- [S24] J. W. Zha, X. Meng, D. R. Wang, Z. M. Dang and R. K. Y. Li, Appl. Phys. Lett., 2014, 104, 072906.
- [S25] Y. Niu, K. Yu, Y. Bai, F. Xiang and H. Wang, RSC Adv., 2015, 5, 64596-64603.
- [S26] Y. Niu, Y. Bai, K. Yu, Y. Wang, F. Xiang and H. Wang, ACS Appl. Mater. Interfaces, 2015, 7, 24168-24176.
- [S27] Z. M. Dang, H. Y. Wang and H. P. Xu, Appl. Phys. Lett., 2006, 89, 112902.
- [S28] R. Gregorio, M. Cestari and F. E. Bernardino, J. Mater. Sci., 1996, 31, 2925-2930.
- [S29] Z. M. Dang, L. Z. Fan, Y. Shen and C. W. Nan, Chem. Phys. Lett., 2003, 369, 95-100.
- [S30] Y. Li, X. Huang, Z. Hu, P. Jiang, S. Li and T. Tanaka, ACS Appl. Mater. Interfaces, 2011, 3, 4396-4403.
- [S31] T. Zhou, J. W. Zha, R. Y. Cui, B. H. Fan, J. K. Yuan and Z. M. Dang, ACS Appl. Mater. Interfaces, 2011, 3, 2184-2188.
- [S32] P. Hu, Y. Shen, Y. Guan, X. Zhang, Y. Lin, Q. Zhang and C. W. Nan, Adv. Funct. Mater., 2014, 24, 3172-3178.
- [S33] F. Wen, Z. Xu, W. Xia, X. Wei and Z. Zhang, Polym. Eng. Sci., 2013, 53, 897-904.
- [S34] L. Y. Xie, X. Y. Huang, K. Yang, S. T. Li and P. K. Jiang, J. Mater. Chem. A, 2014, 2, 5244-5251.
- [S35] T. Siponkoski, M. Nelo, J. Peräntie, J. Juuti and H. Jantunen, Compos. Part B-Eng., 2015, 70, 201-205.
- [S36] J. Li, J. Claude, L. E. Norena-Franco, S. I. Seok and Q. Wang, Chem. Mater., 2008, 20, 6304-6306.
- [S37] H. Tang, Z. Zhou and H. A. Sodano, ACS Appl. Mater. Interfaces, 2014, 6, 5450-5455.
- [S38] C. Ehrhardt, C. Fettkenhauer, J. Glenneberg, W. Münchgesang, C. Pientschke, T. Großmann, M. Zenkner, G. Wagner, H. S. Leipner, A. Buchsteiner, M. Diestelhorst, S. Lemm, H. Beige and S. G. Ebbinghaus, *Mater. Sci. Eng-B*, 2013, **178**, 881-888.

- [S39] P. Kim, S. C. Jones, P. J. Hotchkiss, J. N. Haddock, B. Kippelen, S. R. Marder and J. W. Perry, *Adv. Mater.*, 2007, 19, 1001-1005.
- [S40] H. J. Ye, W. Z. Shao and L. Zhen, Colloids Surf. Physicochem. Eng. Aspects, 2013, 427, 19-25.
- [S41] M. Rahimabady, M. S. Mirshekarloo, K. Yao and L. Lu, Phys. Chem. Chem. Phys., 2013, 15, 16242-16248.
- [S42] W. Yang, S. Yu, R. Sun and R. Du, Acta Mater., 2011, 59, 5593-5602.
- [S43] P. Thomas, K. T. Varughese, K. Dwarakanath and K. B. R. Varma, Compos. Sci. Technol., 2010, 70, 539-545.
- [S44] P. Thomas, eXPRESS Polym. lett., 2010, 4, 632-643.
- [S45] C. Ehrhardt, C. Fettkenhauer, J. Glenneberg, W. Münchgesang, H. S. Leipner, M. Diestelhorst, S. Lemm, H. Beige and S. G. Ebbinghaus, J. Mater. Chem. A, 2014, 2, 2266-2274.
- [S46] B. Shri Prakash and K. B. R. Varma, Compos. Sci. Technol., 2007, 67, 2363-2368.
- [S47] Z. M. Dang, T. Zhou, S. H. Yao, J. K. Yuan, J. W. Zha, H. T. Song, J. Y. Li, Q. Chen, W. T. Yang and J. Bai, Adv. Mater., 2009, 21, 2077-2082.
- [S48] S. Babu, K. Singh and A. Govindan, Appl. Phys. A-Mater., 2012, 107, 697-700.
- [S49] Y. P. Shen, A. J. Gu, G. Z. Liang and L. Yuan, Compos. Part A-Appl. Sci. Manuf., 2010, 41, 1668-1676.
- [S50] X. Chao, P. Wu, Y. Zhao, P. Liang and Z. Yang, Journal of Materials Science: Materials in Electronics, 2015, 26, 3044-3051.
- [S51] J. Fu, Y. Hou, Q. Wei, M. Zheng, M. Zhu and H. Yan, J. Appl. Phys., 2015, 118, 235502.
- [S52] D. Bhadra, A. Biswas, S. Sarkar, B. K. Chaudhuri, K. F. Tseng and H. D. Yang, J. Appl. Phys., 2010, 107, 124115.
- [S53] Z. M. Dang, J. B. Wu, L. Z. Fan and C. W. Nan, Chem. Phys. Lett., 2003, 376, 389-394.
- [S54] Y. Bai, Z. Y. Cheng, V. Bharti, H. S. Xu and Q. M. Zhang, Appl. Phys. Lett., 2000, 76, 3804-3806.
- [S55] K. H. Lam and H. L. W. Chan, Compos. Sci. Technol., 2005, 65, 1107-1111.
- [S56] A. Peláiz-Barranco and P. Marin-Franch, J. Appl. Phys., 2005, 97, 034104.
- [S57] J. Yao, C. Xiong, L. Dong, C. Chen, Y. Lei, L. Chen, R. Li, Q. Zhu and X. Liu, J. Mater. Chem., 2009, 19, 2817.
- [S58] H. Tang, Y. Lin and H. A. Sodano, Adv. Energy Mater., 2012, 2, 469-476.
- [S59] H. Tang, Y. Lin, C. Andrews and H. A. Sodano, Nanotechnology, 2011, 22, 015702.
- [S60] Y. J. Choi, M. J. Yoo, H. W. Kang, H. G. Lee, S. H. Han and S. Nahm, J. Electroceram., 2012, 30, 30-35.
- [S61] W. Nhuapeng and T. Tunkasiri, J. Am. Ceram. Soc., 2004, 85, 700-702.
- [S62] Y. Feng, H. Gong, Y. Xie, X. Wei, L. Yang and Z. Zhang, J. Appl. Phys., 2015, 117, 094104.
- [S63] L. Jylhä, J. Honkamo, H. Jantunen and A. Sihvola, J. Appl. Phys., 2005, 97, 104104.