Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information Lu₂CaMg₂(Si_{1-x}Ge_x)₃O₁₂: Ce³⁺ Solid-solution Phosphors: Bandgap Engineering for Blue-light Activated Afterglow Applicable to AC-LED

Hang Lin,^{ab} Bo Wang,^a Qingming Huang,^c Feng Huang,^{ab} Ju Xu,^{ab} Hui Chen,^a Zebin Lin,^a Jiaomei Wang,^a Tao Hu,^a Yuansheng Wang^{*ab}

^a Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (P. R. China);

^b Fujian Provincial Key Laboratory of Nanomaterials, Fuzhou, Fujian, 350002 (P. R. China);

^c Instrumentation Analysis and Research Center, Fuzhou University, Fuzhou, Fujian 3 50002 (P. R. China)

Table S1. Refinement results of interatomic distances in Lu_{1.99}CaMg₂Si_{1.5}Ge_{1.5}O₁₂ solid-solution phosphors.

sona sonation phosphors.			
Distance (nm)	Bonds	Distance (nm)	
0.2514	Mg ₁ -O ₁	0.1979	
0.2387	$Si_1(Ge_1)-O_1$	0.1695	
	Distance (nm) 0.2514 0.2387	Distance (nm)Bonds 0.2514 Mg1-O1 0.2387 Si1(Ge1)-O1	

Table S2. Estimated thermal quenching parameters of Ce³⁺-doped LCMSGO solid-

solution phosphors.

Sample	T _{0.5} (K)	$E_q (eV)$
Si:Ge=2:1	360	0.207
Si:Ge=1:1	320	0.188
Si:Ge=1:2	290	0.158
LCMGO	240	0.149

*E-mail: yswang@fjirsm.ac.cn; Tel/Fax: +86-591-63179438

Figure S1. Dependence of the (a) lattice constant and (b) bandgap on x of the compounds $Lu_2CaMg_2(Si_{1-x}Ge_x)_3O_{12}$.

Figure S2. Schematic illustration of the method dealing with the Lu/Ca and Ge/Si cation disorders in DFT calculation. In order to remain the symmetry to the most extent, the Si/Ge1, Si/Ge3, and Si/Ge5 sites were set to be occupied by Si, while the Si/Ge2, Si/Ge4, and Si/Ge6 sites by Ge; likewise, the Ca/Lu1 and Ca/Lu4 sites were set to be occupied by Ca, while the Ca/Lu2, Ca/Lu3, Ca/Lu5, and Ca/Lu6 sites by Lu.

Figure S3. Normalized emission spectra of the $Lu_2CaMg_2(Si_{1-x}Ge_x)_3O_{12}:0.01Ce^{3+}$ (x=0-1) samples with various Si:Ge ratio upon 460 nm excitation.

Figure S4. PersL decay curves for (a) the Lu₂CaMg₂(Si_{1-x}Ge_x)₃O₁₂:xCe³⁺ phosphors (x=0.005-0.04) and (b) the Lu₂CaMg₂Si_{1.5}Ge_{1.5}O₁₂:0.01Ce³⁺ phosphors with various the H₃BO₃ amount (0-6 wt%).

Figure S5. TL curves by pre-heating/cooling the (a) Si:Ge=1:1, (c) Si:Ge=1:2, and (e) LCMGO samples at different T_{exc} (excitation wavelength: 460 nm, heating rate: 1K/s). Corresponding initial rise analyses on the TL curves of (b) Si:Ge=1:1, (d) Si:Ge=1:2, and (f) LCMGO samples as a function of T_{exc} .

Figure S6. Excitation time dependent TL glow curves of the $Lu_2CaMg_2Si_1Ge_2O_{12}:0.01Ce^{3+}$ at a heating rate of 1 K/s (λ_{ex} =460 nm, λ_{em} =580 nm).