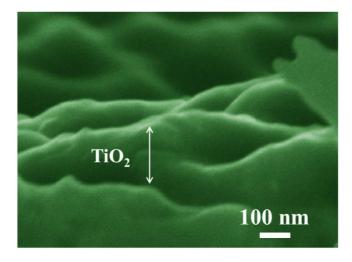
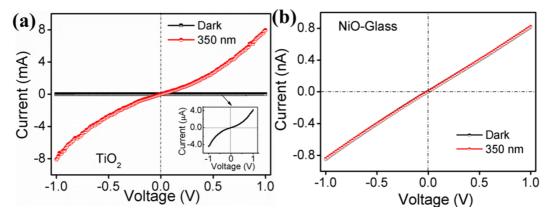
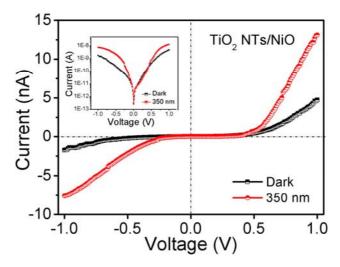
Supporting Information

Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO₂ nanowells/p-NiO mesoporous

nanosheets heterojunction

Lingxia Zheng, Feng Teng, Zhiming Zhang, Bin Zhao, and Xiaosheng Fang* Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China. E-mail: xshfang@fudan.edu.cn (X.S. Fang)

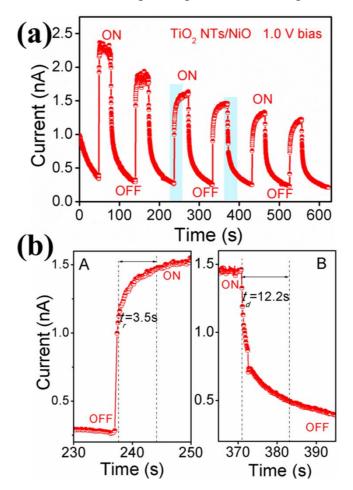

Fig. S1 Cross-sectional SEM image of TiO₂ nanowells on a Ti metal substrate.

Fig. S2 Typical *I-V* curves for different photodetectors based on (a) TiO₂ nanowells, (b) pure NiO nanosheets. Inset in (a) shows the enlarged *I-V* curve under dark condition.

Fig. S3 *I-V* curves for conventional TiO_2 nanotubes/NiO nanosheets hybrid photodetector. Inset shows the corresponding *I-V* curves in logarithmic coordinates.

Fig. S4 (a) *I-t* curves during on-off switching tests at 1.0 V bias with 350 nm illumination for conventional TiO_2 nanotubes/NiO nanosheets hybrid photodetector. (b) Enlarged portions of a (A) 230-250 s range and a (B) 365-395 s range corresponding to light-off to light-on and light-on to light-off transitions, respectively.