Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Understanding the temperature-dependent evolution of solution processed metal oxide transistor characteristics based on molecular precursor derived amorphous indium zinc oxide

Shawn Sanctis,^a Rudolf Hoffmann,^a Ruben Precht,^b

(a) (b) Transmission (C) 3000 4000 2000 1000 500 Wavenumber [cm⁻¹]

Wolfgang Anwand^c and Jörg J. Schneider^{a*}

Figure S1: IR spectra of (a) dimethyl-2-nitromalonate¹⁶, (b) $[Zn_3(OH)_4(dmm-NO_2)_2]^{16}$ and (c) $[In_3O_3(dmm-NO_2)_3]$ ·toluene (2).

Figure S2: (a) Thermogravimetric mass loss curves of $[Zn_4O(dmm-NO)_6]$ (**1**)and $In_3O_3(dmm-NO_2)_3$ (**2**) in oxygen.(b)Thermogravimetric mass loss curve (straight line) and corresponding Gram– Schmidt signal (dotted line) of (**2**).

Figure S3: (a) Gas phase IR spectrum corresponding to the maximum of the Gram–Schmidt signal in Figure S1(b) from the decomposition of $In_3O_3(dmm-NO_2)_3(2)$ as well as reference spectra of (b) dimethyl carbonate, (c) methanol and (d) dimethyl oxalate.

Figure S4: AFM micrographs and the obtained root mean square roughness (R_{RMS}) for the IZO films annealed at increasing temperatures from 250 to 400°C.

Figure S5: Averaged saturation field-effect mobility (μ_{SAT}), threshold voltage (V_{th}) and current on-off ratio ($I_{on/off}$) of eight devices with the corresponding standard deviations for the IZO TFTs annealed at increasing temperatures from 250 to 450°C.

Figure S6: a) Transfer characteristics and b) Output characteristics of the TFT device for IZO films annealed at 450 °C.