New Two-Dimensional Mn-based MXenes with Room-Temperature Ferromagnetism and Half-Metallicity

Junjie He,[†] Pengbo Lyu, [†] and Petr Nachtigall*,[†]

[†]Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic

E-mail: petr.nachtigall@natur.cuni.cz

Table of Content:

Comparison of H and T structures of Mn ₂ C MXene	page 2
Structural stability of Mn ₂ CF ₂ monolayer	page 3
The band structure of Mn_2CF_2 at HSE06 level of the Mn_2CO_2	ory Spin charge density for Mn ₂ C and page 4
PDOS for Mn ₂ CO ₂	page 5

1. Comparison of H and T structure

Fig. S1. The relative energy for H and T structure Mn2C monolayer.

Fig. S2. Two possible sites for functional atoms/groups, site 1 and site 2 are shown in parts (a) and (b), respectively; top and side views are shown in upper and lower panels, respectively.

2. Structural stability of Mn₂CF₂ monolayer

To study the thermal stability of the Mn₂CF₂ MXenes monolayer, the *ab initio* molecular dynamics (AIMD) simulations at 500 K in a canonical ensemble are performed using the Nosé heat bath approach. The phonon frequencies were calculated by using density functional perturbation theory (DFPT) approach as implemented in the PHONOPY code.^{1,2}

Fig. S3: (a) Variations of the total potential energy of Mn₂CF₂ monolayer during *ab initio* molecular dynamics simulations at 500 K. (b) Phonon dispersion curves for Mn₂CF₂

monolayer.

3. The band structure of Mn₂CF₂ at HSE06 level.

Fig. S4. The band structure of Mn₂CF₂ calculated at the HSE06 level. The red and blue curves represent the spin-up and spin down channels, respectively.

Fig. S5. The Spin charge density for Mn_2C (a) and Mn_2CO_2 (b) are calculated, respectively.

The red and blue densities represent the spin-up and spin down, respectively.

FigS6. PDOS of Mn *d* states (blue, red, and green) and C and O *p* states for Mn₂CO₂ (black

and brown, respectively) are shown.

Reference

¹ K. Parlinski, Z. Q. Li, Y. Kawazoe, *Phys. Rev. Lett.*, 1997, 78, 4063.

² A. Togo, O. Fumiyasu, T. Isao, *Phys. Rev. B*, 2008, **78**(13), 134106.