Supporting Information

Comprehensive structure-function correlation of photoactive ionic π -conjugated supermolecular assemblies: an experimental and computational study

Morteza Adinehnia, ^aBryan Borders, ^a Michael Ruf, ^b Bhaskar Chilukuri, ^a K. W. Hipps, ^a* Ursula Mazur^a*

^aDepartment of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, WA, 99164-4630, USA ^bBruker AXS Inc., Madison, WI, 53711, USA

Figure S1. Molecular electrostatic potential (MEP) surfaces of neutrally charged TMPyP:TSPP binary porphyrin complex. The electrostatic potential surface energies range from -67 (red) to +67 (blue) kcal mol⁻¹. The isodensity value for the MEP mapping is 0.03 a.u.

re is

Figure S4. AFM images and corresponding cross sectional profiles of two different TMPyP:TSPP crystalline rods.

Figure S5. SEM micrographs illustrating morphology of a TMPyP:TSPP crystalline rod. The top surface and sloping sides of the crystals are flat with the top face being smoother than the sides.

Figure S6. Projected density of states (pDOS) of TMPyP:TSPP crystal from DFT (top) and EHTB (bottom). In the images pDOS is plotted as a function of TMPyP, TSPP components and as a function of π -stacking components and non π -stacking components.

Figure S7. Power dependence of the photoconductivity of TMPyP:TSPP measured at different illumination wavelengths. Graph (a) was obtained with 405 nm excitation and has a slope of 0.223 nA/mW. Trace (b) was acquired with 445 nm excitation and has a slope of 0.133 nA/mW. Plot (c) was recorded with 671 nm excitation and has a slope of 0.032 nA/mW.

Field effect experiments were carried out by exciting the TMPyP:TSPP crystals at 445 nm (14 mW/mm²) while applying $V_{SD} = 120 \text{ mV}$ and applying V_G of -300, -200, -100, 0, 100, 200, and 300 V to determine the sign of the primary charge carrier.

Figure S8. Gate Voltage (V_G) dependence of the TMPyP:TSPP photoconductivity. $V_{SD} = 120$ mV. The decrease in current with application of a negative voltage and increase in current with the application of a positive gate voltage is consistent with the behavior of an n-type photoconductor.

Figure S9. Solid state luminescence spectra of free-base forms of the TMPyP and TSPP tectons and the TMPyP:TSPP rods. Note the scale factor on the TSPP emission.

Figure S10. Photocurrent versus laser power of TMPyP:TSPP rods illuminated with 445 nm laser light.

Figure S11. Lifetime of PPC versus laser power of TMPyP:TSPP rods illuminated with 445 nm laser light.

Figure S12. Arrhenius plots of the photoconductivity of TMPyP:TSPP assemblies as a function of temperature for: (a) nonpersistent photoconductivity with 671 nm excitation and (b) persistent photoconductivity with 445 nm excitation. Calculated activation energies associated with each plot are shown.

Parameter type	Parameter value			
Theta range for data collection	3.09 to 66.76°			
Index ranges	9≤h≤9, -19≤k≤19, -32≤l≤34			
Reflections collected	33146			
Independent reflections	6977 [R(int) = 0.0818]			
Coverage of independent reflections	99.1%			
Absorption correction	Multi-Scan			
Refinement method	Full-matrix least-squares on F2			
Refinement program	SHELXL-2014/7 ^a			
Function minimized	$\Sigma w(Fo^2 - Fc^2)2$			
Data / restraints / parameters	6977 / 852 / 591			
Goodness-of-fit on F2	1.023			
Final R indices	4493 data; I>2σ(I)	R1 = 0.0625, wR2 = 0.1591		
	all data	R1 = 0.1056, wR2 = 0.1808		
Weighting scheme	$w=1/[\sigma 2(Fo2)+(0.0917P)2+$	1.2876P]		
	where $P=(Fo^2+2Fc^2)/3$			
Extinction coefficient	0.0007(1)			
Largest diff. peak and hole	1.183 and -0.460 eÅ-3			
R.M.S. deviation from mean	0.087 eÅ-3			
Density	1.47 g/cm^3			

Table S1. Data collection and structure refinement parameters from XRD experiment ofTMPyP:TSPP nanorods.

^aReference 1.

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters of					
TMPyP:	TSPP crystals.	а	1	TI()4	
01	X/a	y/b		U(eq)*	
<u>SI</u>	0.21/91(12)	0.03/41(5)	0.09218(4)	0.0325(3)	
<u>S2</u>	0.28441(12)	0.31/94(6)	0.30155(4)	0.0376(3)	
01	0.0895(3)	0.06436(14)	0.06061(10)	0.0363(7)	
02	0.3631(3)	0.08680(14)	0.09083(11)	0.0397(7)	
03	0.1632(4)	0.02518(15)	0.13852(10)	0.0408(8)	
04	0.4038(4)	0.25514(19)	0.31112(11)	0.0512(8)	
05	0.1200(3)	0.28807(18)	0.30180(10)	0.0448(8)	
06	0.3146(4)	0.38902(19)	0.33054(11)	0.0519(9)	
07	0.5783(5)	0.1492(2)	0.25796(13)	0.0646(10)	
08	0.9245(5)	0.14459(19)	0.27490(13)	0.0611(10)	
09	0.9427(5)	0.1389(2)	0.17849(12)	0.0579(9)	
O10	0.5992(4)	0.14264(19)	0.16284(14)	0.0535(9)	
N1	0.9105(4)	0.55249(16)	0.05771(11)	0.0265(7)	
N2	0.0075(4)	0.39021(16)	0.03590(11)	0.0256(7)	
N3	0.8119(4)	0.37150(18)	0.24805(11)	0.0295(7)	
N4	0.2240(4)	0.06609(16)	0.93015(12)	0.0281(7)	
N5	0.4896(3)	0.61127(16)	0.96641(10)	0.0236(7)	
N6	0.4118(4)	0.55367(16)	0.05769(11)	0.0259(7)	
C5	0.8635(4)	0.63281(19)	0.06012(13)	0.0249(8)	
C6	0.7881(4)	0.6455(2)	0.10317(14)	0.0286(9)	
C7	0.7928(4)	0.5744(2)	0.12637(14)	0.0296(9)	
C8	0.8728(4)	0.5158(2)	0.09813(13)	0.0259(8)	
С9	0.9031(4)	0.4344(2)	0.10984(13)	0.0261(8)	
C10	0.9605(4)	0.3750(2)	0.07925(13)	0.0250(8)	
C11	0.9862(4)	0.2898(2)	0.08923(14)	0.0263(8)	
011	0.6887(16)	0.5557(10)	0.2699(5)	0.068(4)	
C12	0.0445(4)	0.2556(2)	0.05168(13)	0.0268(8)	
C13	0.0595(4)	0.3186(2)	0.01771(13)	0.0256(8)	
C14	0.1155(4)	0.30715(19)	0.97324(13)	0.0252(8)	
C15	0.8737(4)	0.4096(2)	0.15780(13)	0.0249(8)	
C16	0.9381(5)	0.4554(2)	0.19467(14)	0.0297(9)	
C17	0.9056(5)	0.4356(2)	0.23909(14)	0.0315(9)	
C18	0.7514(4)	0.3239(2)	0.21344(14)	0.0288(8)	
C19	0.7808(4)	0.3416(2)	0.16892(14)	0.0278(8)	
C20	0.7721(5)	0.3534(3)	0.29615(14)	0.0367(10)	
C21	0.1530(4)	0.2220(2)	0.95933(13)	0.0248(8)	
C22	0.2592(4)	0.1712(2)	0.98507(14)	0.0277(8)	
C23	0.2916(4)	0.0948(2)	0.96964(14)	0.0279(8)	
C24	0.2668(5)	0.9845(2)	0.91282(16)	0.0359(10)	
C25	0.1178(5)	0.1120(2)	0.90541(14)	0.0291(9)	
C26	0.0816(4)	0.1897(2)	0.91914(13)	0.0262(8)	
C27	0.5325(4)	0.62550(19)	0.92269(13)	0.0246(8)	
C28	0.5036(4)	0.7104(2)	0.91185(14)	0.0264(8)	
C29	0.4481(4)	0.7455(2)	0.94973(13)	0.0268(8)	

Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters of

C30	0.4369(4)	0.6836(2)	0.98445(13)	0.0245(8)
C31	0.3831(4)	0.69569(19)	0.02895(13)	0.0249(8)
C32	0.3634(4)	0.6338(2)	0.06163(13)	0.0255(8)
C33	0.2867(4)	0.6436(2)	0.10458(13)	0.0261(8)
C34	0.2891(4)	0.5705(2)	0.12592(14)	0.0284(9)
C35	0.3712(4)	0.5140(2)	0.09702(13)	0.0249(8)
C36	0.4039(4)	0.4318(2)	0.10788(13)	0.0241(8)
C37	0.3448(4)	0.7804(2)	0.04356(13)	0.0243(8)
C38	0.4146(4)	0.8122(2)	0.08427(13)	0.0254(8)
C39	0.3796(4)	0.8911(2)	0.09871(14)	0.0272(8)
C40	0.2725(5)	0.9389(2)	0.07239(14)	0.0281(8)
C41	0.2046(4)	0.9092(2)	0.03168(14)	0.0287(9)
C42	0.2395(4)	0.8307(2)	0.01754(14)	0.0259(8)
C43	0.3705(4)	0.4044(2)	0.15556(13)	0.0259(8)
C44	0.2805(4)	0.3337(2)	0.16301(14)	0.0284(9)
C45	0.2535(4)	0.3074(2)	0.20748(14)	0.0311(9)
C46	0.3133(4)	0.3523(2)	0.24450(14)	0.0308(9)
C47	0.3995(5)	0.4227(2)	0.23786(14)	0.0318(9)
C48	0.4290(4)	0.4483(2)	0.19350(14)	0.0293(9)
*U(ea) is	s defined as one third of t	he trace of the orthogon	alized U _{ii} tensor.	

Table S3. Interatomic	e distances (Å) in TMPyP	TSPP crystal structure.	
S1-01	1.448(3)	S1-O2	1.455(3)
S1-O3	1.459(3)	S1-C40	1.782(3)
S2-O4	1.449(3)	S2-O5	1.451(3)
S2-O6	1.456(3)	S2-C46	1.784(4)
07-Н7	1.12(5)	O8-H8	1.02(4)
О9-Н9	0.98(8)	O10-H10	0.85(5)
N1-C8	1.373(5)	N1-C5	1.377(4)
N2-C10	1.363(5)	N2-C13	1.366(4)
N2-H2	0.88	N3-C17	1.341(5)
N3-C18	1.356(5)	N3-C20	1.486(5)
N4-C23	1.345(5)	N4-C25	1.345(5)
N4-C24	1.480(4)	N5-C27	1.360(5)
N5-C30	1.377(4)	N5-H5	0.88
N6-C35	1.374(5)	N6-C32	1.382(4)
C5-C14	1.401(5)	C5-C6	1.443(5)
C6-C7	1.349(5)	С6-Н6	0.95
C7-C8	1.447(5)	С7-Н7	0.95
C8-C9	1.399(5)	C9-C10	1.418(5)
C9-C15	1.488(5)	C10-C11	1.443(5)
C11-C12	1.341(5)	С11-Н11	0.95
O11-H11	1.17(6)	C12-C13	1.443(5)
C12-H12	0.95	C13-C14	1.411(5)
C14-C5	1.401(5)	C14-C21	1.492(5)
C15-C16	1.400(5)	C15-C19	1.404(5)

C16-C17	1.375(6)	C16-H16	0.95
C17-H17	0.95	C18-C19	1.364(5)
C18-H18	0.95	С19-Н19	0.95
С20-Н20А	0.98	С20-Н20В	0.98
С20-Н20С	0.98	C21-C26	1.396(5)
C21-C22	1.407(5)	C22-C23	1.364(5)
С22-Н22	0.95	С23-Н23	0.95
C24-H24A	0.98	C24-H24B	0.98
C24-H24C	0.98	C25-C26	1.375(5)
С25-Н25	0.95	С26-Н26	0.95
C27-C36	1.414(5)	C27-C28	1.447(5)
C28-C29	1.345(5)	С28-Н28	0.95
C29-C30	1.441(5)	С29-Н29	0.95
C30-C31	1.406(5)	C31-C32	1.407(5)
C31-C37	1.492(5)	C32-C33	1.439(5)
C33-C34	1.352(5)	С33-Н33	0.95
C34-C35	1.444(5)	С34-Н34	0.95
C35-C36	1.410(5)	C36-C27	1.414(5)
C36-C43	1.500(5)	C37-C38	1.401(5)
C37-C42	1.402(5)	C38-C39	1.396(5)
С38-Н38	0.95	C39-C40	1.393(5)
С39-Н39	0.95	C40-C41	1.382(6)
C41-C42	1.389(5)	C41-H41	0.95
C42-H42	0.95	C43-C48	1.391(5)
C43-C44	1.402(5)	C44-C45	1.395(5)
C44-H44	0.95	C45-C46	1.382(6)
C45-H45	0.95	C46-C47	1.377(5)
C47-C48	1.393(6)	C47-H47	0.95
C48-H48	0.95		

Table S4. Bond angles (°) i	n TMPyP:TSPP cry	ystal structure.	
01-81-02	113.63(16)	01-S1-O3	112.43(17)
02-S1-O3	113.16(18)	O1-S1-C40	105.16(18)
O2-S1-C40	105.90(16)	O3-S1-C40	105.64(16)
04-S2-O5	113.26(19)	O4-S2-O6	111.0(2)
05-82-06	113.95(19)	O4-S2-C46	106.66(17)
O5-S2-C46	106.01(18)	O6-S2-C46	105.19(18)
C8-N1-C5	107.5(3)	C10-N2-C13	108.1(3)
С10-N2-Н2	125.9	С13-N2-Н2	125.9
C17-N3-C18	120.4(3)	C17-N3-C20	119.7(3)
C18-N3-C20	119.9(3)	C23-N4-C25	120.2(3)
C23-N4-C24	120.8(3)	C25-N4-C24	119.0(3)
C27-N5-C30	108.1(3)	C27-N5-H5	125.9
C30-N5-H5	125.9	C35-N6-C32	107.4(3)
N1-C5-C14	126.4(3)	N1-C5-C6	108.5(3)
C14-C5-C6	125.1(3)	C7-C6-C5	107.9(3)
С7-С6-Н6	126.0	С5-С6-Н6	126.0
C6-C7-C8	107.1(3)	С6-С7-Н7	126.5
С8-С7-Н7	126.5	N1-C8-C9	125.7(3)
N1-C8-C7	108.9(3)	C9-C8-C7	125.3(3)
C8-C9-C10	124.3(3)	C8-C9-C15	117.1(3)
C10-C9-C15	118.5(3)	N2-C10-C9	125.2(3)
N2-C10-C11	108.6(3)	C9-C10-C11	126.2(3)
C12-C11-C10	107.3(3)	C12-C11-H11	126.4
С10-С11-Н11	126.4	C11-C12-C13	107.8(3)
С11-С12-Н12	126.1	C13-C12-H12	126.1
N2-C13-C14	126.5(3)	N2-C13-C12	108.2(3)
C14-C13-C12	125.3(3)	C5-C14-C13	126.9(3)
C5-C14-C21	115.8(3)	C13-C14-C21	117.2(3)
C16-C15-C19	116.5(3)	C16-C15-C9	120.2(3)
C19-C15-C9	123.3(4)	C17-C16-C15	120.9(3)
С17-С16-Н16	119.6	С15-С16-Н16	119.6
N3-C17-C16	120.6(4)	N3-C17-H17	119.7
С16-С17-Н17	119.7	N3-C18-C19	120.8(3)
N3-C18-H18	119.6	С19-С18-Н18	119.6
C18-C19-C15	120.8(4)	С18-С19-Н19	119.6
С15-С19-Н19	119.6	N3-C20-H20A	109.5
N3-C20-H20B	109.5	H20A-C20-H20B	109.5
N3-C20-H20C	109.5	Н20А-С20-Н20С	109.5
H20B-C20-H20C	109.5	C26-C21-C22	117.2(3)
C26-C21-C14	119.9(3)	C22-C21-C14	122.9(3)
C23-C22-C21	119.8(4)	С23-С22-Н22	120.1
С21-С22-Н22	120.1	N4-C23-C22	121.6(4)
N4-C23-H23	119.2	C22-C23-H23	119.2
N4-C24-H24A	109.5	N4-C24-H24B	109.5
H24A-C24-H24B	109.5	N4-C24-H24C	109.5
H24A-C24-H24C	109.5	H24B-C24-H24C	109.5
N4-C25-C26	120.6(4)	N4-C25-H25	119.7

С26-С25-Н25	119.7	C25-C26-C21	120.5(4)
С25-С26-Н26	119.8	С21-С26-Н26	119.8
N5-C27-C36	126.7(3)	N5-C27-C28	108.8(3)
C36-C27-C28	124.4(3)	C29-C28-C27	107.0(3)
С29-С28-Н28	126.5	С27-С28-Н28	126.5
C28-C29-C30	108.1(3)	С28-С29-Н29	126.0
С30-С29-Н29	126.0	N5-C30-C31	126.5(3)
N5-C30-C29	107.9(3)	C31-C30-C29	125.6(3)
C30-C31-C32	125.1(3)	C30-C31-C37	118.4(3)
C32-C31-C37	116.5(3)	N6-C32-C31	126.0(3)
N6-C32-C33	108.6(3)	C31-C32-C33	125.4(3)
C34-C33-C32	107.7(3)	С34-С33-Н33	126.1
С32-С33-Н33	126.1	C33-C34-C35	107.4(3)
С33-С34-Н34	126.3	С35-С34-Н34	126.3
N6-C35-C36	126.1(3)	N6-C35-C34	108.9(3)
C36-C35-C34	125.0(3)	C35-C36-C27	124.6(3)
C35-C36-C43	117.0(3)	C27-C36-C43	118.4(3)
C38-C37-C42	117.7(3)	C38-C37-C31	120.3(3)
C42-C37-C31	122.0(3)	C39-C38-C37	121.2(4)
С39-С38-Н38	119.4	C37-C38-H38	119.4
C40-C39-C38	119.5(4)	С40-С39-Н39	120.2
С38-С39-Н39	120.2	C41-C40-C39	120.2(3)
C41-C40-S1	119.9(3)	C39-C40-S1	119.9(3)
C40-C41-C42	120.0(4)	C40-C41-H41	120.0
C42-C41-H41	120.0	C41-C42-C37	121.3(4)
C41-C42-H42	119.4	C37-C42-H42	119.4
C48-C43-C44	118.4(4)	C48-C43-C36	120.8(3)
C44-C43-C36	120.9(3)	C45-C44-C43	120.6(4)
C45-C44-H44	119.7	C43-C44-H44	119.7
C46-C45-C44	119.7(3)	C46-C45-H45	120.2
C44-C45-H45	120.2	C47-C46-C45	120.6(4)
C47-C46-S2	119.2(3)	C45-C46-S2	120.2(3)
C46-C47-C48	119.8(4)	С46-С47-Н47	120.1
C48-C47-H47	120.1	C43-C48-C47	121.0(4)
С43-С48-Н48	119.5	C47-C48-H48	119.5

Table S5. Anisotropic atomic displacement parameters (Å2) in TMPyP:TSPP crystal structure. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U₁₁ + ... + 2 h k a^{*} b^{*} U₁₂].

аb	U_{12}].	1		1		1
	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	0.0438(6)	0.0156(4)	0.0388(7)	-0.0001(4)	0.0099(5)	0.0027(4)
S2	0.0409(6)	0.0451(6)	0.0272(6)	0.0063(5)	0.0063(4)	0.0049(5)
01	0.0378(15)	0.0221(12)	0.0493(19)	0.0011(12)	0.0056(13)	0.0047(11)
02	0.0437(16)	0.0200(12)	0.056(2)	-0.0006(13)	0.0060(14)	-0.0002(11)
03	0.0633(19)	0.0240(13)	0.0361(18)	-0.0039(12)	0.0147(15)	0.0102(12)
O4	0.0530(18)	0.0634(19)	0.0376(19)	0.0167(16)	0.0084(15)	0.0183(15)
05	0.0399(16)	0.0599(18)	0.0344(18)	0.0127(15)	0.0023(13)	-0.0037(14)
06	0.071(2)	0.0539(18)	0.0317(19)	-0.0063(15)	0.0088(16)	-0.0065(16)
07	0.078(3)	0.064(2)	0.052(2)	0.0024(19)	0.005(2)	0.0074(19)
08	0.075(3)	0.0474(19)	0.061(3)	0.0069(18)	0.009(2)	0.0066(17)
09	0.070(2)	0.0526(19)	0.052(2)	-0.0114(17)	0.0121(19)	0.0027(18)
O10	0.069(2)	0.0429(18)	0.049(2)	0.0015(17)	0.006(2)	0.0103(16)
N1	0.0381(18)	0.0162(13)	0.0254(18)	0.0005(12)	0.0034(14)	0.0011(12)
N2	0.0373(18)	0.0148(13)	0.0248(18)	-0.0008(12)	0.0022(14)	0.0015(12)
N3	0.0336(17)	0.0319(16)	0.0230(18)	0.0012(14)	0.0022(14)	0.0052(13)
N4	0.0359(17)	0.0172(13)	0.032(2)	-0.0015(13)	0.0082(14)	-0.0009(12)
N5	0.0351(17)	0.0127(12)	0.0232(18)	-0.0006(12)	0.0031(14)	0.0002(11)
N6	0.0351(17)	0.0186(13)	0.0239(18)	0.0028(12)	0.0009(14)	0.0004(12)
C5	0.032(2)	0.0169(15)	0.026(2)	0.0000(15)	0.0030(16)	-0.0006(14)
C6	0.036(2)	0.0184(16)	0.032(2)	-0.0020(15)	0.0054(17)	0.0047(14)
C7	0.038(2)	0.0220(16)	0.029(2)	-0.0011(16)	0.0074(18)	0.0036(15)
C8	0.034(2)	0.0199(15)	0.024(2)	0.0000(14)	0.0048(16)	-0.0003(14)
С9	0.033(2)	0.0215(16)	0.025(2)	0.0018(14)	0.0038(16)	-0.0002(14)
C10	0.031(2)	0.0184(15)	0.026(2)	0.0010(14)	0.0024(16)	-0.0004(14)
C11	0.037(2)	0.0172(16)	0.025(2)	0.0009(14)	0.0020(17)	-0.0004(14)
011	0.059(9)	0.081(10)	0.060(10)	-0.023(9)	-0.035(7)	0.022(7)
C12	0.036(2)	0.0148(15)	0.029(2)	0.0002(15)	-0.0003(17)	0.0016(14)
C13	0.034(2)	0.0172(15)	0.025(2)	0.0024(14)	0.0003(16)	0.0024(14)
C14	0.032(2)	0.0182(16)	0.025(2)	0.0003(15)	0.0013(16)	0.0019(14)
C15	0.0301(19)	0.0199(16)	0.025(2)	0.0016(14)	0.0034(15)	0.0062(14)
C16	0.035(2)	0.0251(17)	0.029(2)	-0.0018(16)	0.0022(17)	-0.0036(15)
C17	0.036(2)	0.0321(19)	0.026(2)	-0.0010(17)	-0.0006(17)	0.0001(16)
C18	0.033(2)	0.0248(17)	0.029(2)	0.0031(16)	0.0045(16)	0.0045(15)
C19	0.035(2)	0.0215(16)	0.027(2)	-0.0026(15)	0.0030(17)	0.0030(14)
C20	0.043(2)	0.044(2)	0.023(2)	0.0025(18)	0.0039(18)	0.0058(18)
C21	0.0304(19)	0.0200(16)	0.025(2)	0.0003(14)	0.0074(16)	-0.0002(14)
C22	0.033(2)	0.0211(16)	0.029(2)	0.0011(15)	0.0011(16)	-0.0036(14)
C23	0.031(2)	0.0235(17)	0.030(2)	0.0031(16)	0.0048(16)	0.0012(14)
C24	0.044(2)	0.0172(16)	0.047(3)	-0.0088(17)	0.010(2)	0.0030(15)
C25	0.035(2)	0.0258(17)	0.027(2)	0.0002(16)	0.0054(17)	-0.0002(15)
C26	0.0313(19)	0.0215(16)	0.026(2)	0.0005(15)	0.0029(16)	0.0022(14)
C27	0.034(2)	0.0172(16)	0.022(2)	0.0017(15)	0.0007(16)	-0.0020(14)
C28	0.033(2)	0.0202(16)	0.026(2)	0.0038(15)	0.0028(16)	-0.0014(14)

C29	0.036(2)	0.0173(15)	0.027(2)	0.0008(15)	-0.0001(16)	-0.0007(14)
C30	0.0315(19)	0.0174(15)	0.025(2)	0.0025(14)	-0.0001(15)	-0.0022(14)
C31	0.0308(19)	0.0174(15)	0.026(2)	-0.0008(14)	-0.0011(15)	0.0001(14)
C32	0.032(2)	0.0184(15)	0.026(2)	-0.0016(14)	0.0012(16)	0.0011(13)
C33	0.034(2)	0.0176(16)	0.027(2)	-0.0017(15)	0.0020(17)	0.0029(14)
C34	0.033(2)	0.0246(16)	0.028(2)	0.0030(16)	0.0056(17)	0.0020(15)
C35	0.0283(19)	0.0211(15)	0.025(2)	-0.0001(14)	0.0018(16)	-0.0001(13)
C36	0.0292(19)	0.0212(16)	0.022(2)	0.0014(15)	0.0008(16)	0.0000(14)
C37	0.0281(19)	0.0182(15)	0.027(2)	0.0001(14)	0.0045(15)	-0.0004(13)
C38	0.032(2)	0.0212(16)	0.023(2)	0.0032(15)	0.0031(15)	-0.0002(14)
C39	0.034(2)	0.0205(16)	0.027(2)	-0.0007(15)	0.0079(17)	-0.0016(14)
C40	0.036(2)	0.0186(16)	0.031(2)	-0.0011(15)	0.0082(16)	0.0003(14)
C41	0.033(2)	0.0223(16)	0.031(2)	0.0046(16)	0.0061(17)	0.0013(14)
C42	0.0302(19)	0.0204(16)	0.027(2)	0.0002(15)	0.0021(16)	-0.0002(14)
C43	0.0296(19)	0.0223(16)	0.026(2)	0.0019(15)	0.0031(15)	0.0054(14)
C44	0.033(2)	0.0273(17)	0.024(2)	0.0018(15)	0.0023(16)	0.0044(15)
C45	0.035(2)	0.0275(18)	0.032(2)	0.0063(16)	0.0066(17)	0.0029(15)
C46	0.032(2)	0.0350(19)	0.026(2)	0.0019(16)	0.0046(16)	0.0084(15)
C47	0.035(2)	0.0366(19)	0.024(2)	-0.0025(17)	0.0006(17)	0.0076(16)
C48	0.032(2)	0.0285(18)	0.027(2)	-0.0033(16)	-0.0002(16)	0.0049(15)

Table S6. Miller index, multiplicity, attachment energy and percent of coverage for the predictedTMPyP:TSPP crystal morphology using the AE method.					
hkl	Multiplicity	d _{hkl} (Å)	E _{att} (kcal/mol)	%Total facet area	
{0 0 2}	2	14.579	-51.0195	35.4174	
{0 1 1}	4	14.3027	-65.8419	44.2718	
{0 1 2}	4	10.8998	-79.2946	0	
{0 1 3}	4	8.3630	-92.7473	0	
{1 0 0}	2	8.2971	-116.2424	20.3106	
{0 2 0}	2	8.2065	-91.8112	0	
{0 2 1}	4	7.8995	-80.3633	0	
{1 1 0}	4	7.4047	-142.8662	0	
{1 0 -2}	2	7.3489	-161.3968	0	
{1 1 -1}	4	7.2439	-146.8707	0	

crystals as a function of π -stacking distances.					
Interaction Distance	Bands and Effective Masses (m*) at Γ (units: m _e) [‡]				
π - π stacking distances	HOMO (top of valence band)	LUMO (bottom of conduction band)			
3.67 Å	-18.642	7.337			
3.84 Å	-63.848	13.032			
4.01 Å	-129.711	18.115			

Table S7. Effective masses at Gamma point (Γ) from EHTB calculations of TMPvP:TSPP

 $\begin{array}{c|c} 4.01 \text{ \AA} & -129.711 \\ \hline {}^{\ddagger}\text{m}_{e} \text{ is the mass of an electron, } 9.11 \text{ x } 10^{-31} \text{ kilograms.} \end{array}$

Table S8. Photoconductivity parameters at different laser power levels for TMPyP:TSPP						
illuminated with 445 nm laser light at 25 °C.						
	-					

Power (mW)	I _{npc} (nA)	I _{ppc} (nA)	I _{ppc} /I _{npc}	τ (s)	β
11	0.8	2.2	2.8	8528	0.43
21	2.3	4.7	2.1	8176	0.44
38	3.8	7.3	1.9	7320	0.40