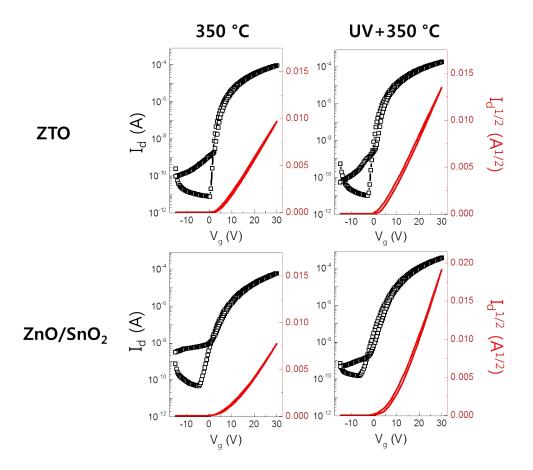
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supplementary Information


Solution-processed indium-free ZnO/SnO₂ bilayer heterostructures as a low-temperature route to high-performance metal oxide thin-film transistors with excellent stabilities

Sooji Nam,*^a Jong-Heon Yang,^a Sung Haeng Cho,^a Ji Hun Choi,^a Oh-Sang Kwon,^a Eun-Suk

Park,^a Su-Jae Lee,^a Kyoung-Ik Cho,^a Jaeyoung Jang,^b and Chi-Sun Hwang^{*a}

^aInformation Control Device Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon, 305-700, Korea *E-mail: sjnam15@etri.re.kr; hwang-cs@etri.re.kr

^bDept. of Energy Engineering, Hanyang University, Seoul, 133-791, Korea

Fig. S1 A comparison of the device characteristics measured from single layer ZTO and ZnO/SnO₂ bilayer TFTs annealed at 350°C with or without UV treatment prior to thermal treatment. The average μ measured from the ZTO TFTs prepared with or without UV treatment were found to be 1.8 cm² V⁻¹ s⁻¹ or 3.4 cm² V⁻¹ s⁻¹, respectively. The average μ measured from the ZnO/SnO₂ TFTs prepared with or without UV treatment were found to be 2.2 cm² V⁻¹ s⁻¹ or 10.4 cm² V⁻¹ s⁻¹, respectively.

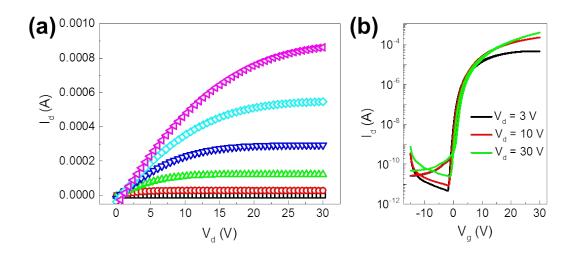
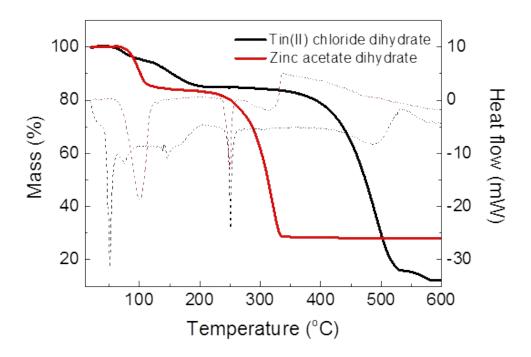



Fig. S2 Output characteristics and transfer characteristics at different drain voltages applied to the ZnO/SnO_2 TFTs annealed at 300°C

Fig. S3 Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements obtained from the Sn and Zn precursors.

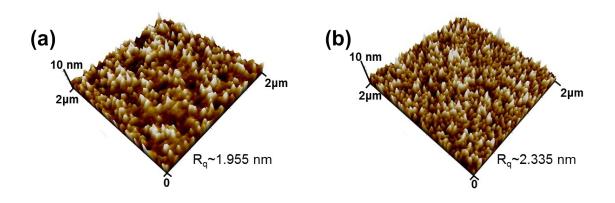


Fig. S4 Atomic force microscopy (AFM) images obtained from the (a) ZTO and (b) ZnO/SnO_2 films.