Electronic Supplementary Information for Journal of Materials Chemistry C This journal is (c) The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

Aggregation-induced emission (AIE) active iridium(III) complex

toward highly efficient single-layer non-doped

electroluminescent device

Peng Li,^{a,c} Qun-Ying Zeng,^b Hai-Zhu Sun,^a Mansoor Akhtar,^a Guo-Gang Shan,^{a*} Xue-Gang Hou,^a Fu-Shan Li^{b*} and Zhong-Min Su^{a*}

^aInstitute of Functional Material Chemistry, faculty of chemistry, Northeast Normal

University, Changchun, 130024 Jilin, P. R. China

^bInstitute of Optoelectronic Technology, FuZhou University, FuZhou, 350002, P. R.

China

^cCollege of Chemistry, Jilin University, Qianjin Road 2699, Changchun 130023, P. R. China

E-mail: <u>shangg187@nenu.edu.cn</u> (G. G. Shan), <u>zmsu@nenu.edu.cn</u> (Z. M. Su), : <u>fushanli@hotmail.com</u> (F. S. Li)

Fig. S1.TD-DFT simulated absorption spectra of A1 and NA2 in CH₃CN.

Table S1. Calculated excited energies, dominant orbital excitations, and oscillator strengths (f) of A1 in CH₃CN solution obtained from TD-DFT calculation.

A1	Excited state	eV/nm	f	Major contributions ^a	Character ^b
Band 1	S35	4.86/255	0.38	H-6→L+3 (17%)	IL
				H-5→L+2 (15%)	IL
				H-3→L+3 (19%)	IL
	S26	4.56/272	0.21	H-9→L (38%)	IL
				H-6→L+1 (30%)	IL/MLCT/LLCT
				H-5→L+1 (15%)	IL/MLCT/LLCT
Band 2	S 6	3.61/344	0.08	H-6→L (92%)	MLCT/LLCT

^{*a*} H and L denote HOMO and LUMO, respectively. ^{*b*} MLCT, LLCT and IL denote metal-to-ligand charge transfer, ligand-to-ligand and ligand centered charge transfer, respectively.

Fig. S2. Selected frontier molecular orbitals involved in crucial electronic excitations of **A1**. H and L denote HOMO and LUMO, respectively.

Table S2. Calculated excited energies, dominant orbital excitations, and oscillator strength (f) of NA2 in CH₃CN solution obtained from TD-DFT calculation.

NA2	Excited state	eV/nm	f	Major contributions ^a	Character ^b
Band 1	S30	4.86/255	0.37	H-6→L+3 (16%)	IL
				H-5→L+2 (16%)	IL
				H-3→L+3 (18%)	IL/MLCT/LLCT
	S21	4.52/274	0.05	H-8→L (38%)	LLCT
				H-6→L+1 (31%)	IL
Band 2	S5	3.59/345	0.07	H-6→L (52%)	MLCT/LLCT
				H-2→L (44%)	MLCT/LLCT

^{*a*} H and L denote HOMO and LUMO, respectively. ^{*b*} MLCT, LLCT and IL denote metal-to-ligand charge transfer, ligand-to-ligand and ligand centered charge transfer, respectively.

Fig. S3. Selected frontier molecular orbitals involved in crucial electronic excitations of **NA2**. H and L denote HOMO and LUMO, respectively.

Fig. S4. Emission spectra of A2 in CH₃CN solution and in neat film.

Fig. S5. Emission spectra of complexes A1, A2 and NA2 in neat film at room temperatures (a) and 77 K (b).

Fig. S7. HOMOs and LUMOs of A1, A2 and NA2 calculated by DFT method.

Fig. S8. TGA (a) and DSC (b) curves of the iridium(III) complexes of A1 and NA2.

RMS = 0.25 nm

RMS = 0.28 nm

Fig. S9. AFM topographic images of the solution-processed films of A1 (a) and NA2 (b).

Fig.S10. PL spectra in neat films and EL spectra of A1 (a) and NA2 (b)

Fig. S11. Current density-Voltage (J-V) of the hole-only and electron-only devices based complexes A1 and NA2.

Table S3 Vertical ionization potential (IP), vertical electron affinity (EA), extraction								
potential (HEP and EEP) and intramolecular reorganization energy (λ_{hole} and $\lambda_{electron}$).								
	IP (v)	HEP (v)	EA (v)	EEP (v)	λ_{hole}	$\lambda_{\text{electron}}$		
A1	8.47	8.30	4.24	3.77	0.17	0.47		
NA2	8.92	8.68	4.24	3.78	0.24	0.46		