## Crystal structure, tunable emission and applications of $Ca_{1-x}Al_{1-x}Si_{1+x}N_{3-x}O_x$ : RE (x = 0-0.22, RE = Eu<sup>2+</sup>, Ce<sup>3+</sup>) solid solution phosphors for white light-emitting diodes

Shuxing Li<sup>1,2,3</sup>, Le Wang<sup>4</sup>, Qiangqiang Zhu<sup>5</sup>, Daiming Tang<sup>6</sup>, Xuejian Liu<sup>1,\*</sup>, Guofeng Cheng<sup>7</sup>, Lu Lu<sup>8</sup>, Takashi Takeda<sup>2</sup>, Naoto Hirosaki<sup>2</sup>, Zhengren Huang<sup>1</sup>, and Rong-Jun Xie<sup>2,9\*</sup>

\*Corresponding Author: E-mail: (Xie.Rong-Jun@nims.go.jp; xjliu@mail.sic.ac.cn)

<sup>1</sup>The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

<sup>2</sup>Sialon Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan

<sup>3</sup>University of Chinese Academy of Sciences, Beijing, 100049, China

<sup>4</sup>College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China

<sup>5</sup>Key Lab of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China

<sup>6</sup>Thermal Energy Materials Group, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan

<sup>7</sup>Analysis and Testing Center for Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

<sup>8</sup>Beijing Yuji-Xinguang Optoelectronic Technology Co., Ltd, Beijing, 101111, China

<sup>9</sup>College of Materials, Xiamen University, Xiamen, 361005, China



Fig. S1 XRD patterns of samples of Ca<sub>1-x</sub>Al<sub>1-x</sub>Si<sub>1+x</sub>N<sub>3-x</sub>O<sub>x</sub> (x = 0.25, 0.3, 0.35, 0.4, 0.5, 0.6).



**Fig. S2** XPS survey scan for the samples of  $Ca_{1-x}Al_{1-x}Si_{1+x}N_{3-x}O_x$ :Ce 1% (x = 0 and 0.22).



 $\label{eq:Fig.S3} \textbf{Fig.S3} \ \textbf{Cathodoluminescence spectra of (a)} \ \textbf{Ca}_{1-x}\textbf{Al}_{1-x}\textbf{Si}_{1+x}\textbf{N}_{3-x}\textbf{O}_{x}: \textbf{Ce 1\% and (b)} \ \textbf{Ca}_{1-x}\textbf{Al}_{1-x}\textbf{Si}_{1+x}\textbf{N}_{3-x}\textbf{O}_{x}: \textbf{Eu 1\%}.$ 



**Fig. S4** Diffusion reflection spectra of  $Ca_{1-x}Al_{1-x}Si_{1+x}N_{3-x}O_x$  with (a) x = 0, (b) x = 0.12, and (c) x = 0.22.

Table S1 Analyzed cationic ratios of  $Ca_{1-x}AI_{1-x}Si_{1+x}N_{3-x}O_x$  (x = 0, 0.04, 0.08, 0.12, 0.22)

| Sample          | Initial comp | Initial composition |      |      | Final composition <sup>a</sup> |      |  |
|-----------------|--------------|---------------------|------|------|--------------------------------|------|--|
| Sample          | Са           | Al                  | Si   | Са   | Al                             | Si   |  |
| <i>x</i> = 0    | 1            | 1                   | 1    | 0.96 | 1.02                           | 0.98 |  |
| <i>x</i> = 0.04 | 0.96         | 0.96                | 1.04 | 0.94 | 0.98                           | 1.02 |  |
| <i>x</i> = 0.08 | 0.92         | 0.92                | 1.08 | 0.92 | 0.94                           | 1.06 |  |
| <i>x</i> = 0.12 | 0.88         | 0.88                | 1.12 | 0.87 | 0.89                           | 1.11 |  |
| <i>x</i> = 0.22 | 0.78         | 0.78                | 1.22 | 0.78 | 0.78                           | 1.22 |  |

<sup>a</sup>Normalized against the total Al + Si = 2.

Table S2 Analyzed N/O ratios of Ca<sub>1-x</sub>Al<sub>1-x</sub>Si<sub>1+x</sub>N<sub>3-x</sub>O<sub>x</sub> (x = 0, 0.04, 0.08, 0.12, 0.22)

| Sample | Sampla          | Initial compositio | n    | Final composition <sup>b</sup> |      |
|--------|-----------------|--------------------|------|--------------------------------|------|
|        | Ν               | 0                  | Ν    | 0                              |      |
|        | <i>x</i> = 0    | 3                  | 0    | 2.91                           | 0.09 |
|        | <i>x</i> = 0.04 | 2.96               | 0.04 | 2.87                           | 0.13 |
|        | <i>x</i> = 0.08 | 2.92               | 0.08 | 2.84                           | 0.16 |
|        | <i>x</i> = 0.12 | 2.88               | 0.12 | 2.82                           | 0.18 |
|        | <i>x</i> = 0.22 | 2.78               | 0.22 | 2.78                           | 0.22 |

<sup>*b*</sup>Normalized against the total N + O = 3.

Table S3 Atomic coordination of  $Ca_{1-x}AI_{1-x}Si_{1+x}N_{3-x}O_x$  (x = 0)

| Atom     | X         | У         | Z          | Occupancy | Uiso      |  |
|----------|-----------|-----------|------------|-----------|-----------|--|
| Cal      | 0         | 0.3151(9) | 0.4950(2)  | 1.00      | 0.0150(3) |  |
| (Si/Al)1 | 0.1740(3) | 0.1582(9) | 0.0208(4)  | 0.50/0.50 | 0.0068(7) |  |
| N1       | 0.2127(1) | 0.1219(7) | 0.3749(9)  | 1.00      | 0.0015(0) |  |
| N2       | 0         | 0.2454(7) | -0.0173(1) | 1.00      | 0.0049(5) |  |

Table S4 Atomic coordination of  $Ca_{1-x}AI_{1-x}Si_{1+x}N_{3-x}O_x$  (x = 0.12)

| Atom     | x         | у         | Ζ          | Occupancy | Uiso      |
|----------|-----------|-----------|------------|-----------|-----------|
| Caı      | 0         | 0.3259(3) | 0.4951(9)  | 1.00      | 0.0184(9) |
| (Si/Al)1 | 0.1747(4) | 0.1545(7) | 0.0215(2)  | 0.44/0.56 | 0.0058(2) |
| (N/O)1   | 0.2143(4) | 0.1275(6) | 0.3755(6)  | 1.00      | 0.0004(0) |
| (N/O)2   | 0         | 0.2374(4) | -0.0181(6) | 1,00      | 0.0065(5) |

Table S5 Atomic coordination of  $Ca_{1-x}AI_{1-x}Si_{1+x}N_{3-x}O_x$  (x = 0.22)

| Atom                   | X         | У         | Z          | Occupancy | Uiso      |
|------------------------|-----------|-----------|------------|-----------|-----------|
| (Ca/V <sub>Ca</sub> )1 | 0.6916(6) | 0.8357(6) | 0.2690(8)  | 0.78/0.22 | 0.0231(3) |
| Si1                    | 0.3593(9) | 0.1479(0) | -0.2017(1) | 1.00      | 0.0040(2) |
| (Si/Al)2               | 0.5095(4) | 0.3438(2) | 0.2985(2)  | 0.22/0.78 | 0.0109(0) |
| (N/O)1                 | 0.4608(0) | 0.6353(6) | 0.1615(1)  | 1.00      | 0.0037(0) |
| (N/O)2                 | 0.3899(8) | 0.1226(2) | 0.1478(2)  | 1.00      | 0.0017(6) |
| (N/O)3                 | 0.6972(8) | 0.2625(4) | 0.2725(2)  | 1.00      | 0.0138(2) |

## Table S6 Selected bond length (Å) of $Ca_{1-x}AI_{1-x}Si_{1+x}N_{3-x}O_x$ (x = 0)

| Average | 2.4923(17) | Average     | 1.8089(25) |
|---------|------------|-------------|------------|
| Ca1-N2  | 2.4829(33) |             |            |
| Ca1-N2  | 2.499(4)   | (Si/Al)1-N2 | 1.7841(14) |
| Ca1-N2  | 2.622(4)   | (Si/Al)1-N1 | 1.8208(31) |
| Ca1-N1  | 2.4284(25) | (Si/Al)1-N1 | 1.7875(32) |
| Ca1-N1  | 2.4284(25) | (Si/Al)1-N1 | 1.8432(24) |
|         |            |             |            |

## Table S7 Selected bond length (Å) of $Ca_{1-x}AI_{1-x}Si_{1+x}N_{3-x}O_x$ (x = 0.12)

| Ca1-(N/O)1 | 2.4364(26) | (Si/Al)1-(N/O)1 | 1.8315(28) |  |
|------------|------------|-----------------|------------|--|
| Ca1-(N/O)1 | 2.4364(26) | (Si/Al)1-(N/O)1 | 1.7974(26) |  |
| Ca1-(N/O)2 | 2.636(5)   | (Si/Al)1-(N/O)1 | 1.7928(27) |  |
| Ca1-(N/O)2 | 2.503(5)   | (Si/Al)1-(N/O)2 | 1.7689(15) |  |
| Ca1-(N/O)2 | 2.468(4)   |                 |            |  |
| Average    | 2.4962(50) | Average         | 1.7976(74) |  |
|            |            |                 |            |  |

## Table S8 Selected bond length (Å) of $Ca_{1-x}AI_{1-x}Si_{1+x}N_{3-x}O_x$ (x = 0.22)

| Ca1-(N/O)1 | 2.547(7) | Si1-(N/O)1      | 1.709(7) |
|------------|----------|-----------------|----------|
| Ca1-(N/O)2 | 2.333(7) | Si1-(N/O)2      | 1.785(7) |
| Ca1-(N/O)3 | 2.413(5) | Si1-(N/O)2      | 1.731(7) |
| Ca1-(N/O)3 | 2.555(7) | Si1-(N/O)3      | 1.642(9) |
| Ca1-(N/O)3 | 2.589(7) | (Si/AI)2-(N/O)1 | 1.846(7) |
|            |          | (Si/AI)2-(N/O)1 | 1.885(7) |
|            |          | (Si/AI)2-(N/O)2 | 1.859(7) |
|            |          | (Si/AI)2-(N/O)3 | 1.864(9) |
| Average    | 2.488(1) | Average         | 1.790(9) |