Supporting Information

Self-reducible Copper ion complex ink for air sinter-

able conductive electrode

Sanghun Cho^a, Zhenxing Yin^a, Yong-Keon Ahn^a, Yuanzhe Piao^{a,b}, Jeeyoung Yoo^{a*}, and Youn Sang Kim^{a,b*}

a Program in Nano Science and Technology, Graduate School of Convergence Science and

Technology, Seoul National University, Suwon 443-270, Republic of Korea

b Advanced Institutes of Convergence Technology, Suwon 443-270, Republic of Korea

*E-mail: younskim@snu.ac.kr, jyoo78@snu.ac.kr

Fig. S1. XRD patterns of the sintered Cu electrode film made using pCu-ink with TEG and PEG 200

Fig. S2. TGA results of 3wt % gCu-ink under ambient air condition

Fig. S3. Surface morphologies of the sintered Cu electrode films made using 3 wt% gCu-ink at (a) 200 °C, (b) 250 °C, (c) 300 °C and (d) 350 °C

Fig. S4. XPS Cu 2p spectra of the sintered Cu electrode film at 350 °C with the intrinsic Cu-ink

Fig. S5. After 10 times peel-off test, optical photograph image of adhesion enhanced Cu electrode film made using gCu-ink with 1 wt% APTES

Fig. S6. Electrical resistivity of gCu-ink with no addition, 0.5, and 1 wt% APTES

As prepared glycerol mixed ink

After 4weeks glycerol mixed ink

Fig. S7. Photograph of 3wt % and 10 wt% gCu-ink dissolved in IPA. For 4 weeks, phase separation was not found in gCu-ink mixture.

Fig. S8. Image of the Cu-ink by addition of 3wt % hydrazine (N_2H_2) and sodium borohydride $(NaBH_4)$, respectively