Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Strong Carrier Localization in 3*d* Transition Metal Oxynitride LaVO_{3-x}N_x Epitaxial Thin Films

Masahito Sano¹, Yasushi Hirose*^{1,2}, Shoichiro Nakao², and Tetsuya Hasegwa^{1,2}

1 Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-

0033, Japan

2 Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012,

Japan

*E-mail: hirose@chem.s.u-tokyo.ac.jp

Supplementary figure S1. Nitrogen content *x* of the LaVO_{3-*x*}N_{*x*} thin films plotted against the ratio of the input power of the RF source to the deposition rate. *x* was systematically increased with an increase of the input power of the RF source/deposition rate ratio.

Supplementary figure S2. Reciprocal space maps around 103 diffraction of $LaVO_{3-x}N_x$ thin films with various nitrogen amount grown on LSAT (001).

Supplementary figure S3. X-ray diffraction reciprocal space map around 103 diffraction of the $LaVO_{2,29}N_{0.71}$ thin film grown on a SrTiO₃ (001) substrate.

Supplementary figure S4. Typical AFM image of the $LaVO_{2.29}N_{0.71}$ thin film grown on a SrTiO₃ (001) substrate. Scale-bar denotes a length of 1 μ m.