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Text S1. Formation Energy (Ef) and Binding Energy (EB) Calculations 

The formation energy (Ef) is calculated for each C-doped gh-C3N4 using the following 

equation: 

Ef = (EC(N)@gh-C3N4 – Egh-C3N4) – x(μC – μN)]       (2) 

where EC(N)@gh-C3N4 is the total energy of CN@gh-C3N4, Egh-C3N4 is the total energy of gh-

C3N4 sheet. μC and μN represents the chemical potential of carbon and nitrogen atoms, which 

are calculated from graphene and N2, respectively. We have also calculated the binding 

energy (EB) of carbon in the N-site of gh-C3N4 using the following equation: 

EB = ECN@gh-C3N4 – (Egh-C3N4 +xEC)       (3) 

where, EC represents the total energy of the isolated C atom. 

Table S1: Formation energy (Ef)/dopant, binding energy (EB), magnetic moments (per doped 

C), Band gap (eV) for CN@gh-C3N4 systems are tabulated. Different doping C-concentrations 

and their respective values are given. 

Doping concentration 

(%) 

Ef  

(eV) 

EB  

(eV) 

Magnetic 

moment (μB) 

Nature Band gap  

(eV) 

 

3.12 

N1-position 0.52 

 

8.72 0.90 Metallic -- 

N2-position 1.05 9.06 1.00 Semiconductor 0.92 

N3-position 0.41 

 

8.83 0.80 Metallic -- 

 

6.25 

N1-position 0.56 8.68 0.90 Metallic -- 

N2-position 1.09 9.04 1.00 Semiconductor          0.86 

N3-position 0.45 

 

8.81 0.80 Metallic -- 

 

9.37 

N1-position 0.56 8.53 0.90 Metallic -- 

N2-position 1.02 9.17 1.00 Semiconductor 0.59 

N3-position 0.42 

 

8.72 0.80 Metallic -- 

 

 

12.50 

N1-position 0.55 8.44 0.90 Semiconductor Up-spin: 1.98 

Down-spin: 0.33 

N2-position 1.12 9.12 1.00 Half-metallic Up-spin: Metallic 

Down-spin: 1.45 

N3-position 0.43 8.67 0.80 Semiconductor Up-spin: 2.10 

Down-spin: 0.13 
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Figure S1: (a) Optimized structure, TDOS/PDOS and Band Structure of CN1@gh-C3N4. (b) 

Optimized structure, TDOS/PDOS and Band Structure of CN3@gh-C3N4. A red dashed box 

shows unitcell. The Fermi level is indicated by a black dashed line. 
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Figure S2: Total and partial DOS of CN2@gh-C3N4 using HSE06 functional.  

 

Figure S3: Partial DOS of (a) CN1@gh-C3N4, (b) CN2@gh-C3N4 and (c) CN3@gh-C3N4. 

 

Figure S4: Schematic representation of sp
2
 hybridization in CN@gh-C3N4.  
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Table S2: Bader charges of CN@gh-C3N4 systems. 

 

Figure S5: The structure of (a) pure gh-C3N4, (b) CN1@gh-C3N4, (c) CN2@gh-C3N4, and (d) 

CN3@gh-C3N4. The black dashed circle denotes the doped C-atom. 

System Net Effective Charges 

C N 

gh-C3N4 C1= +1.75 

C2=C3= +1.42 

C4= +1.64 

C5=C6=C7=+1.37 

N1= -1.03 

N2= -1.07 

N3= -1.17 

 

CN1@gh-C3N4 C4=C5=C6= +1.06 

CN1= +0.25 

N2= -1.15 

N3= -1.09 

CN2@gh-C3N4 C2=+0.84 

C7=+0.83 

CN2= +0.26 

N1= -1.08 

N3= -1.23 

CN3@gh-C3N4 C1=C2=C3=+1.04 

CN3= +0.14 

N1= -1.11 

N2= -1.13 
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Figure S6: Electrostatic potentials (ESP) plots (Isosurface value: 0.09 e.Å
-3

) of (a) pure gh-

C3N4, (b) CN1@gh-C3N4, (c) CN2@gh-C3N4, and (d) CN3@gh-C3N4. The blue and red colours 

denote less and more electron dense area in the electrostatic potential surface.  
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Figure S7: Optimized structures and total and partial density of states of 3.12% (a) CN1@gh-

C3N4, (b) CN2@gh-C3N4, and (c) CN3@gh-C3N4 systems. A red dashed box shows unitcell. 
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Figure S8: Optimized structures and total and partial density of states of 6.25% (a) CN1@gh-

C3N4, (b) CN2@gh-C3N4, and (c) CN3@gh-C3N4 systems. A red dashed box shows unitcell.  
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Figure S9: Optimized structures and total and partial density of states of 9.37% (a) CN1@gh-

C3N4, (b) CN2@gh-C3N4, and (c) CN3@gh-C3N4 systems. A red dashed box shows unitcell. 
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Figure S10: Total energy fluctuation during AIMD simulations of (a) CN1@gh-C3N4, and (b) 

CN3@gh-C3N4 systems at 500 and 1000 K. The structures represent the snapshot at 10 ps for 

each simulation.  

Text S2: Calculation of mechanical properties 

The CN2@gh-C3N4 monolayer sheets can be distorted either by tensile strain (by gradually 

increasing the lattice parameters) or compressive strain (by gradually reducing the lattice 

parameters). The percentage (%) of applied strain can be calculated as follows.
1
 

                                             % Strain = (a–a1)/a×100     (4) 

Here ‘a’ and ‘a1’ are the lattice constants of the monolayer sheet before and after the strain. 

Tensile strains are applied along the in-plane uniaxial and biaxial directions to calculate the 

mechanical stability of CN2@gh-C3N4 system. The effects of uniaxial and biaxial strains are 
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examined on a supercell (2×2×1) of 56 atoms. Atomic positions are relaxed at each strain 

until the forces on each atom are less than 10
-2

 eV/Å. Elastic limit is calculated from the 

stress-strain curve under the tensile stretch given in the manuscript in Figure 4c.
2
 

Further, the mechanical properties of the CN2@gh-C3N4 sheets can be calculated from the 

strain vs. strain energy plot [Figure 4b, Manuscript]. The elastic energy (U/per unit cell) near 

the equilibrium position can be calculated using the following formula:  

          U =
1

2
C11εxx

2  +
1

2
C22εyy

2 + C12εxxεyy + 2C44εxy
2      (5) 

where, C11, C22, C12 and C44 are the linear elastic constants, whereas εxx
 , εyy

 , εxy
  are the in-

plane stress along the x, y and xy directions (according to Voigt notation),
4
 respectively. The 

value of the elastic constants can be calculated from the polynomial fitting of strain vs. 

energy plot.
4-6

 The main criteria for mechanical stability are C11 > C12 and C44 > 0. The value 

of C11 can be obtained under uniaxial deformation, whereas C12 can be calculated by 

polynomial fitting under biaxial deformation. For all three CN2@gh-C3N4 systems, we find 

that C11 > C12 and C44 > 0. Thereby, the calculated elastic constants of CN2@gh-C3N4 sheets 

satisfy all the criteria to be mechanically stable. Young’s modulus (Y) and Poisson’s ratio 

(PR) are calculated using the following formulas.
3
 

 Y = (C
2

11-C
2
12)/ C11   (6) 

PR = C12/C11   (7) 

Table S3: Exchange energy (Eex) and Curie temperature (TC) value of 12.50% CN@gh-C3N4 

system.  
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Compound 

Magnetic 

Moment/

C 

(μB) 

Exchange energy 

(meV)/C 

[Eex = EFM -EAFM ] 

Energy Difference 

(meV)/C 

(Ediff = EFM -ENSP) 

 

Curie 

Temperature 

(TC) in (K) 

MAE in (μeV)/C 

(Magnetic 

Anisotropy 

Energy) 

CN1@gh-C3N4 0.90 -111.41 -47.89 294 9.83 

CN2@gh-C3N4 1.00 -151.54 -30.26 402 12.20 

CN3@gh-C3N4 0.80 -75.53 -22.31 204 7.36 

 

Text S3. Calculation of Magnetic Anisotropy Energy (MAE)  

The magnetic anisotropy energy (MAE) is calculated by applying the torque approach.
7-8

 

Non-collinear self-consistent calculations (including spin orbit coupling) are performed in the 

z, y and x axis magnetization directions, respectively. MAE originates from the perpendicular 

and in plane contribution of spin orbit coupling (SOC), which can be expressed in terms of 

angular momentum operators Lx, Ly or Lz. So the contribution of different spins (up ‘↑↑’ and 

down ‘↓↓’) can be expressed by the second order perturbation equation.
6
  

𝑀𝐴𝐸 = 𝜉2 ∑
│ < 𝑜│𝐿𝑍│𝑢 > │2 −  │ < 𝑜│𝐿𝑋│𝑢 > │2

𝐸𝑢 − 𝐸𝑜
𝑜,𝑢

 

Here, o and u represent the occupied and unoccupied electronic states, respectively. The Eo 

and Eu in the denominator are their respective band energies. LZ and LX are the angular 

momentum operators along Z and X axis, and ξ denotes the strength of the SOC. So, a 

potential with good MAE for practical application should hold a high value of ξ.  Then, the 

MAE is calculated using the following equation:  

MAE = ES0 – ES1          (8) 
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Where ES0 is the energy of the materials without employing any magnetic axis and ES1 is the 

energy in presence of an easy axis.  Total energies are converged to a precision of 10
-6

 eV in 

MAE calculations. 

Text S3.1 Mean Field Theory (MFT): 

We have taken the MFT approach to calculate the Curie tempareture for the two dimentional 

CN@gh-C3N4 systems. This method has been previously used by Li et al.
9 

for the Curie 

tempareture calculation for Mn-phthalocyanine (MnPc) system.  The main idea behind MFT 

method is to replace all interactions to any one body with an average or effective 

interaction.
10 

 It reduces any multi-body problem into an effective one-body problem. The 

detailed partition function can be written as follows,  

Z = ∑ 𝑒𝛾𝐽′𝑚<𝑀>/𝑘𝐵𝑇
𝑚=−𝑀,−𝑀+2,…..𝑀−2,𝑀        (9) 

Here, ‘J՜’ is the exchange parameter, ‘γ’ is the coordination number, ‘m’ is the ensemble-

average magnetic moment, and ‘M’ is the calculated magnetic moment of the system. 

Thus, the average spin of each magnet becomes, 

<m> = 
1

𝑍
∑ 𝑚 × 𝑒𝛾𝐽′𝑚<𝑀>/𝑘𝐵𝑇

𝑚=−𝑀,−𝑀+2,…..𝑀−2,𝑀      (10) 

Now, if we assume that, P = 
𝛾𝐽′

𝑘𝐵𝑇
 , then the equation 5 becomes, 

The above equation can be easily deducible when the parameter ‘P’ varies along with the 

static solution <m>. At the critical point,  

P = Pc = 
𝛾𝐽′

𝑘𝐵𝑇𝑐
          (11) 

At this critical point, the phase transition of the system between ferromagnetic to 

paramagnetic occurs. This critical point is known as Curie temperature. 
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3.2 Monte Carlo Simulations: 

Monte Carlo simulations involve generating a subset of configurations or samples, chosen 

using a random algorithm from a configuration space, according to a probability distribution 

or weight function. Observables are then computed as averages over the samples.
11

 

One sample or configuration of the magnet is a particular assignment of spin values, say 

s1 = +1; s2 = -1; s3 = +1; ……………… ; sNs = +1     (12) 

in which each spin is set “up” or “down”. According to statistical mechanics, the average 

value of an observable is got by weighting each configuration with the Boltzmann factor. For 

example, the average magnetization at some fixed temperature T is given by, 

<M> = 
∑ 𝑀𝑒−𝐸/𝑘𝐵𝑇

𝐶𝑜𝑛𝑓𝑖𝑔

∑ 𝑒−𝐸/𝑘𝐵𝑇
𝐶𝑜𝑛𝑓𝑖𝑔

        (13) 

At the Curie temperature (Tc) we expect a marked fluctuation in the magnetic moment (M). 
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