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Spectrum 4

Figure S1. (a) FESEM image of Eu:ZnO (Eu-0.005) and (b) corresponding EDX spectrum (Eu-

0.005) showing presence of Eu, Zn and O.
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Figure S2. (a) XRD pattern of (002) peak of Eu:ZnO sample for different Eu doping contentand

(b) variation of d-spacing obtained from XRD and HRTEM measurement with Eu doping

concentration.
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Figure S3. (a-d) HRTEM images of EuZnO samples for Eu doping of 1, 3, 4 and 5%, respectively.
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Figure S4. (a—d) High resolution XPS spectra of Eu—3d of Eu:ZnO for different Eu doping 1, 3, 4

and 5%, respectively.
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Figure SS. Room temperature PL spectra of Eu:ZnO for different Eu doping. The excitation

wavelength is 355 nm.
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Figure S6. Temperature dependent PL spectra of Eu:ZnO (Eu-0.004) for (a) Dy—’F;,’F,

transitions and (b) ’D;—’F,,’F, transitions respectively.
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Figure S7. Variation of 543 and 552 nm integral PL intensity with temperature of Eu:ZnO (Eu-

0.004).
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Figure S8. Power dependent FIR (/55,/15;9) variation.
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Figure S9. Variation of intensity ratio with temperature in logarithmic scale for (a) case-1
(Is52/1510) and (b) case-2 (I543/1555). The linear part is fitted to In Is5,/15,~-0.04-2676/T and In
I543/1535=-1.05-1815/T for case-1 and 2 respectively and the deviation increases at lower

temperature. This suggests that the degree of population (7) is equal to 1 at higher temperature,

which is only due to the thermal population process,' and 7< 1 at lower temperature. '
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Table S1. Comparison of sensitivity for different rare earth doped materials.

Rare earth ions Host Materials Temp range  Excitations Sk (KD Ref.
X) (nm)
Eu’* YNbO, 303-803 395 233117 2
Eu’* (Y0.75Gd025)203 293-873 393 2350/77 3
Tm3, Yb** NaNbO; 293-353 976 93/7? 4
Tm?, Yb3* PbF, 293-703 980 2829/T? 5
Er**, Yb** LiNbO; 285-453 980 1250/7? 6
Er*', Yb** NaBiTiO; 93-613 980 827/T? 7
Er’*, Yb3* Phosphate glass 283-333 980 0.009/7" 8
Ho*", Yb** CaMoO, 303-543 980 693/T? 9
Nd**, Yb3* CaWO, 303-873 980 1336/T7 10
Dy3* BaYFs; 293-773 355 1507/T? 11
Eu?* Zn0 83 -493 532 3013/17 Present study
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