Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for:

Light harvesting enhancement upon incorporating alloy structured $CdSe_{X}Te_{1-X}$ quantum dots in DPP:PC₆₁BM bulk heterojunction solar cell

Rezvan Soltani^a*, Ali Asghar Katbab^a*, Kerstin Schaumberger^b, Nicola Gasparini^b, Christoph J. Brabec^{b,c}, Stefanie Rechberger^d, Erdmann Spiecker^d, Antoni Gimeno Alabau^e, Andres Ruland^f, Avishek Saha^g, Dirk M. Guldi^g, Vito Sgobba^c* and Tavebeh Ameri^b*

^a Department of Polymer Engineering, Amirkabir University of technology, Tehran, 1591634311, Iran

^b Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, 91058 Erlangen, Germany

^c ZAE - Bayerisches Zentrum für Angewandte Energieforschung e.V., Bavarian Center for Applied Energy Research, Haberstr. 2a, 91058 Erlangen

^d Institute of Micro- and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany

e C/Teniente Mut nº58 p2, CP 46610 Guadassuar, Valencia, Spain

^f Intelligent Polymer Research Institute (IPRI), Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia

^g Department of Chemistry and Pharmacy and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.

Figure S1. FT-IR spectra of (a) oleate capped $CdSe_{X}Te_{1-X}$ QDs (before ligand exchange), (b) pmethylthiolate capped $CdSe_{X}Te_{1-X}$ QDs (after ligand exchange), (c) oleic acid, and (d) pmethylthiophenole.

Figure S2. Powder x-ray diffractogramm of $CdSe_{X}Te_{1-X}$ QDs demonstrating their cubic zinc blende crystallinity.

Figure S3. UV-Vis absorption and PL spectra of methylthiophenol-capped $CdSe_{X}Te_{1-X}$ nanoparticles. (Inset: TEM image of nanoparticles (the scale bar is 50 nm)).

Figure S4. (a) UV-Vis absorption and PL spectra of DPP and CdSe_xTe_{1-x} NPs respectively, (b) UV-Vis absorption and PL spectra of CdSe_xTe_{1-x} NPs and DPP respectively.

Figure S5. Photoluminescence spectra of PCBM, CdSe_XTe_{1-X} and CdSe_XTe_{1-X}:PCBM

Figure S6. Box diagrams displaying (a) V_{oc}, (b) J_{SC}, (c) FF and (d) PCE of 6 cells containing different CdSe_xTe_{1-x} content.

Figure S7. Time dependent photo-CELIV traces of hybrid solar cells with different CdSe_xTe_{1-x} concentrations.

Figure S8. Differential absorption spectra upon excitation at 695 nm (100 nJ) of ternary film containing (a) 1 wt.% CdSe_xTe_{1-x}, (b) 4 wt.% CdSe_xTe_{1-x}, (c) 14 wt.% CdSe_xTe_{1-x}, and (d) 20 wt.% CdSe_xTe_{1-x}. The numbers reported in the legend correspond to the time delays in ps.