Drastic solid-state luminescent color tuning of an archetypal Ir(III) complex using polyoxometalates and application as vapoluminescence chemosensor

P. Bolle, H. Serier-Brault, R. Génois, E. Faulques, A. Boulmier, O. Oms, M. Lepeltier, J. Marrot, A. Dolbecq, P. Mialane and R. Dessapt

Electronic Supporting Information

Synthetic procedures

All chemicals and reagents were purchased from major chemical suppliers and used as received except $[Ir^{III}(ppy)_2(bpy)](PF_6)$ (hereafter labelled as $[Ir](PF_6))$,^{S1} (TBA)₂[W₆O₁₉],^{S2} and (TBA)₄[α -Mo₈O₂₆]^{S3} (TBA⁺ = tetrabutylammonium cation) which have been synthesized according to the reported procedures. ((CH₃CH₂)₂NH₂)₂(NH₄)₂[β -Mo₈O₂₆] and (MePPh₃)₂[Mo₄O₁₀(OCH₃)₆], which were used as optical references of the β -[Mo₈O₂₆]⁴⁻ and [Mo₄O₁₀(OCH₃)₆]²⁻ units for solid-state and liquid UV-vis spectroscopy characterizations, were synthesized as previously described in reference S4 and S5, respectively.

Synthesis of [Ir]₂(TBA)₂[Mo₈O₂₆]-A (Ir₂Mo₈-A). (TBA)₄[α-Mo₈O₂₆] (0.134 g, 0.062 mmol) and (TBA)Br (0.300 g, 0.930 mmol) were dissolved in acetonitrile (8 mL). The colourless solution (solution 1) was stirred for a few minutes at room temperature. In addition, a second solution (solution 2) is obtained by dissolving [Ir](PF₆) (0.096 g, 0.12 mmol) in acetonitrile (8 mL) at room temperature. Solution 2 was added dropwise to solution 1 under vigorous stirring and the resulting yellow solution was stirred at 30 °C for two hours. The precipitation of a yellow solid happened at the beginning of heating. The mixture was kept at room temperature and then filtered. The powder was washed with few milliters of acetonitrile, then ethanol, and dried in air. The powder was placed in an oven at 100 °C for 24h. The yellow-green solid of **Ir₂Mo₈-A** was cooled at room temperature. Yield in Mo: 81%. *Anal.* Calcd for C₉₆H₁₂₀O₂₆N₁₀Mo₈Ir₂: C, 38.67 ; H, 4.06 ; N, 4.70. Found: C, 38,66 ; H, 4.02 ; N, 4.47. FT-IR (KBr cm⁻¹): 3108 (w), 3084 (m), 3061 (sh), 3033 (m); TBA⁺ cation 2961 (s), 2932 (sh), 2872 (s); [Ir]⁺ complex 1607 (s), 1582 (s), 1560 (w), 1548 (w), 1479 (s), 1437 (sh), 1441 (s), 1420 (s), 1378 (w), 1346 (w), 1311 (m), 1269 (m), 1240 (w), 1230 (m), 1167 (s), 1124 (w), 1105 (w), 1064 (m), 1031 (m); uMo=O, uMo-O-Mo 955 (sh), 943 (vs), 912 (vs), 893 (sh), 843 (s), 808 (w), 797 (sh), 766 (s), 733 (vs), 710 (vs), 665 (s), 629 (sh), 557 (m), 525 (m), 476 (m), 453 (w), 409 (s).

Synthesis of $[Ir]_2(TBA)_2[Mo_8O_{26}]$ -B (Ir_2Mo_8 -B). Ir_2Mo_8 -A (0.034 g, 0.011 mmol) and (TBA)Br (0.050 g, 0.155 mmol) were dissolved in DMF (3 mL). The resulting yellow solution was stirred at 50 °C for one hour, filtered and kept at ambient temperature. Yellow crystals of Ir_2Mo_8 -B were isolated from the solution after few days. Yield in Mo: 74%. *Anal*. Calcd for $C_{96}H_{120}O_{26}N_{10}Mo_8Ir_2$: C, 38.67 ; H, 4.06 ; N, 4.70. Found: C, 38,37 ; H,

3,93 ; N, 4.40. FT-IR (KBr cm⁻¹): 3101 (m), 3059 (sh), 3032 (m); TBA⁺ cation 2961 (s), 2932 (sh), 2872 (s); [Ir]⁺ complex 1605 (s), 1582 (s), 1560 (w), 1549 (w), 1477 (s), 1439 (sh), 1443 (s), 1418 (s), 1380 (w), 1314 (m), 1269 (m), 1240 (w), 1228 (m), 1163 (s), 1125 (w), 1108 (w), 1065 (m), 1033 (m); vMo=O, vMo-O-Mo 945 (vs), 912 (vs), 893 (sh), 845 (s), 808 (sh), 797 (w), 764 (s), 733 (vs), 712 (vs), 667 (s), 629 (sh), 557 (m), 523 (m), 461 (m), 419 (m).

Synthesis of $[Ir]_4[Mo_8O_{26}]$ (Ir_4Mo_8). (TBA) $_4[\alpha$ -Mo $_8O_{26}]$ (0.067 g, 0.031 mmol) was dissolved in acetonitrile (4 mL). The colourless solution (solution 1) was stirred for a few minutes at room temperature. In addition, a second solution (solution 2) is obtained by dissolving $[Ir](PF_6)$ (0.099 g, 0.124 mmol) in acetonitrile (4 mL) at room temperature. Solution 2 was added dropwise to solution 1 under vigorous stirring leading to the precipitation of an orange solid. The mixture was stirred at 35 °C for three hours, kept at room temperature, and then filtered. The powder was washed with acetonitrile, ethanol, and dried in air. Then, the powder was placed in an oven at 100 °C for 24h. The orange solid of Ir_4Mo_8 was cooled at room temperature. Yield in Mo: 75%.

Single-crystals of Ir_4Mo_8 were obtained according to the following procedure: (TBA)₄[α -Mo₈O₂₆] (0.033 g, 0.015 mmol) and (TBA)Br (0.075 g, 0.233 mmol) were dissolved in acetonitrile (3 mL). The colourless solution (solution 1) was stirred for a few minutes at room temperature. In addition, a second solution (solution 2) is obtained by dissolving [Ir](PF₆) (0.025 g, 0.031 mmol) in acetonitrile (2 mL) at room temperature. Solution 2 was added dropwise to solution 1 under vigorous stirring. The resulting yellow solution was sealed in a 30 mL Teflon-lined autoclave and was maintained at 110 °C for 40 hours in autogenous pressure conditions. The reactor was then cooled at room temperature and the crystal mixture (orange and yellow crystals) was then filtered and dried in air. Orange crystals of Ir_4Mo_8 were isolated. *Anal.* Calcd for $C_{128}H_{96}O_{26}N_{16}Mo_8Ir_4$: C, 40.35 ; H, 2.54 ; N, 5.88. Found: C, 39.94 ; H, 2.39 ; N, 5.62. FT-IR (KBr cm⁻¹): 3107 (w), 3078 (w), 3032 (m), 2930 (w) ; [Ir]⁺ complex 1628 (m), 1607 (s), 1582 (m), 1560 (w), 1549 (w), 1477 (s), 1470 (sh), 1443 (m), 1418 (s), 1369 (sh), 1308 (m), 1267 (m), 1244 (w), 1227 (w), 1161 (m), 1124 (w), 1104 (sh), 1063 (m), 1030 (m), 1020 (sh) ; vMo=O, vMo-O-Mo 951 (m), 922 (vs), 908 (vs), 853 (s), 802 (vs), 775 (w), 760 (s), 743 (m), 733 (m), 662 (vs), 640 (sh), 631 (sh), 557 (m), 505 (w), 417 (m).

Synthesis of [Ir]₂[Mo₄O₁₀(OCH₃)₆]·2CH₃OH (Ir₂Mo₄). Ir₂Mo₈-A (0.116 g, 0.039 mmol) was dissolved in methanol (15 mL). The resulting yellow solution was stirred at 50 °C for four hours leading to the precipitation of an orange solid. The mixture was kept at room temperature and then filtered. The powder of Ir₂Mo₄ was washed with methanol, ethanol, and dried in air. Yield in Mo: 92%. Single-crystals of Ir₂Mo₄ were obtained according to the following procedure: Ir₂Mo₈-A (0.035 g, 0.012 mmol) was immersing in methanol (3 mL) and the system was setting to standby at ambient temperature. Orange single-crystals of Ir₂Mo₄ were isolated from the system after few days. *Anal***. Calcd for C₇₂H₇₄O₁₈N₈Mo₄Ir₂: C, 41.03 ; H, 3.54 ; N, 5.32. Found: C, 40.86 ; H, 3.23 ; N, 5.26. FT-IR (KBr cm⁻¹): 3417 (vs), 3103 (w), 3051 (sh), 3032 (w), 2975 (m), 2953 (w), 2894 (m), 2812 (m); [Ir]⁺ complex 1636 (m), 1603 (s), 1580 (m), 1560 (w), 1545 (w), 1475 (s), 1447 (m), 1437 (sh), 1418 (s), 1313 (m), 1270 (w), 1246 (w), 1225 (w), 1164 (m), 1070 (m), 1040 (s); vMo=O, vMo-O-Mo 1003 (s), 934 (s), 914 (vs), 881 (s), 799 (m), 768 (vs), 755 (sh), 743 (m), 733 (m), 700 (vs), 673 (sh), 652 (sh), 629 (w), 559 (s), 530 (m), 505 (m), 430 (sh), 421 (m).**

Synthesis of [Ir]₂[W₆O₁₉] (Ir₂W₆). (TBA)₂[W₆O₁₉] (0.173 g, 0.091 mmol) was dissolved in acetonitrile (7 mL). The colourless solution (solution 1) was stirred for a few minutes at room temperature. In addition, a second solution (solution 2) is obtained by dissolving [Ir](PF₆) (0.150 g, 0.187 mmol) in acetonitrile (4 mL) at room temperature. Solution 2 was added dropwise to solution 1 under vigorous stirring leading to the precipitation of an orange solid. The mixture was stirred at 60 °C for four hours, kept at room temperature, and then filtered. The powder was washed with acetonitrile, ethanol, and dried in air. Then the powder was dissolved in DMF (3 mL). The resulting orange solution was stirred at 50 °C for one hour and then filtered. Single-crystals of **Ir₂W₆** were obtained after few days by slow diffusion of ethanol into the solution, at room temperature. Yield in W: 62%. *Anal.* Calcd for C₆₄H₄₈O₁₉N₈W₆Ir₂: C, 28.25 ; H, 1.78 ; N, 4.12. Found: C, 28.56 ; H, 1.68 ; N, 3.93. FT-IR (KBr cm⁻¹): 3101 (w), 3069 (m), 3040 (w), 2972 (w); [Ir]⁺ complex 1607 (s), 1582 (s), 1560 (w), 1549 (w), 1477 (s), 1443 (s), 1420 (s), 1313 (m), 1269 (m), 1246 (w), 1229 (w), 1163 (s), 1124 (w), 1105 (w), 1063 (m), 1043 (sh), 1032 (m); wMo=O, wW-O-W 980 (vs), 887 (w), 880 (sh), 820 (vs), 760 (vs), 733 (s), 669 (m), 638 (sh), 631 (w), 586 (s), 559 (sh), 446 (vs), 420 (m).

Physical Measurements. Elemental analyses of the solids were performed by the "Service de microanalyses ICSN CNRS, in Gif sur Yvette (France). FT-IR spectra were recorded in the 4000-400 cm⁻¹ range on a BRUKER Vertex equipped with a computer control using the OPUS software. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were performed by flowing dry argon with a heating and cooling rate of 5°C/min on a SETARAM TG-DSC 111 between 20 and 800°C. Intensity data collections were carried out with a Bruker D8 VENTURE diffractometer equipped with a PHOTON 100 CMOS bidimensional detector using a high brilliance IµS microfocus X-ray Mo K α monochromatized radiation ($\lambda = 0.71073$ Å) for compounds Ir₂TBA₂Mo₈O₂₆ (CCDC 1505014) and Ir₄Mo₈O₂₆ (CCDC 1505015), and with a Bruker Nonius X8 APEX 2 diffractometer equipped with a CCD bidimensional detector using Mo K α monochromatized radiation (λ = 0.71073 Å) for compounds Ir_2Mo_4 (CCDC 1505016) and Ir_2W_6 (CCDC 1505017). The absorption corrections were based on multiple and symmetry-equivalent reflections in the data set using the SADABS program^{S6} based on the method of Blessing.^{S7} The structure were solved by direct methods and refined by full-matrix leastsquares using the SHELX-TL package.^{S8} The hydrogen atoms were theoretically located on the basis of the conformation of the supporting atoms. Powder X-ray Diffraction spectra were monitored using a D8 Bruker diffractometer in the Bragg-Brentano geometry, equipped with a front germanium monochromator, a copper anode (CuK-L3 radiation λ =1.540598 Å) and a LynxEye PSD detector. NMR spectra were recorded on a Bruker Advance 300 spectrometer operating at 300 MHz for ¹H. Chemical shifts are expressed in parts per million (ppm) downfield from internal TMS. The following abbreviations are used: s, singlet; d, doublet; t, triplet; m, multiplet. Diffuse reflectance spectra were collected at room temperature on a finely ground sample with a Perkin-Elmer Lambda 1050 spectrometer equipped with a 60 mm diameter integrating sphere coated with Spectralon®, a highly reflecting fluoropolymer. Diffuse reflectance was measured from 250 to 1000 nm with a 2 nm step using Halon powder (from Varian) as reference (100% reflectance). The reflectance data were treated by a Kubelka-Munk transformation⁵⁹ to better determine the absorption thresholds. UV-vis absorption spectra in solution were obtained with the same Perkin-Elmer Lambda 1050 spectrometer. Photoluminescence spectra were recorded on a Jobin-Yvon Fluorolog 3 fluorometer equipped with a CCD camera. For photographs, the samples were irradiated with a Fisher Bioblock labosi UV lamp ($\lambda_{exc} = 365$ nm, P = 6W). Time-resolved luminescent

experiments were carried out with a regenerative amplified femtosecond Ti:Sapphire laser system (Spectra Physics Hurricane X) producing 100 fs pulses at 800 nm with a repetitive rate of 1 kHz. The laser line is frequency-doubled in a third harmonic generator to give the excitation wavelength $\lambda_{exc} = 400$ nm (3.1 eV). The femtosecond laser pulses traces were controlled by an oscilloscope WavePro 950 Lecroy. The emission spectra were temporarily resolved using a high dynamic range Hamamatsu C7700 streak camera of temporal resolution < 20 ps equipped with a readout CCD ORCAII camera Peltier cooled to -60 °C. The excitation density in the samples was adjusted with density filters to avoid sample photodegradation. Powder samples were pressed onto silica glass and studied in the solid state.

Fig. S1. Mixed polyhedral and ball-and-stick representations of the crystal packing in Ir_2Mo_8 -B. (a) The β-[Mo₈O₂₆]⁴⁻ units and the TBA⁺ cations are associated via electrostatic interactions into {(TBA)₂[β-Mo₈O₂₆]²⁻} layers. (b) The as-defined {(TBA)₂[β-Mo₈O₂₆]²⁻} layers and [Ir]⁺ complex sheets are stacked along the crystallographic *a* axis. (c) The [Ir]⁺ complexes form a rectangular paving in the (*bc*) plane. (d) The bpy ligand of the [Ir]⁺ complex interacts with the POM surfaces via electrostatic interactions with C···O distances shorter than the sum of the van der Waals radii of the concerned atoms, which suggests a high degree of π - π overlapping conducive to efficient intermolecular charge transfer transitions. (blue octahedra = MoO₆; magenta octahedra = IrN₄C₂; grey sphere: carbon; green sphere: nitrogen; orange sphere: oxygen). C···O interactions between [Ir]⁺ complexes and β-[Mo₈O₂₆]⁴⁻ units are displayed as dotted lines. The hydrogen atoms are omitted for clarity.

Fig. S2. Mixed polyhedral and ball-and-stick representations of the crystal packing in Ir_4Mo_8 . (a) α -[Mo₈O₂₆]⁴⁻ and [Ir]⁺ complex sheets are stacked along the crystallographic *a* axis. (b) The [Ir]⁺ complexes form honeycomblike rubbers ranging along the crystallographic *b* axis, which are separated from each other by α -[Mo₈O₂₆]⁴⁻ rows also ranging along the crystallographic *b* axis. (c) Four [Ir]⁺ complexes strongly interact with the α -[Mo₈O₂₆]⁴⁻ anions via electrostatic interactions with C···O distances shorter than the sum of the van der Waals radii of the concerned atoms, which suggests a high degree of π - π overlapping conducive to efficient intermolecular charge transfer transitions. (blue octahedra = MoO₆; magenta octahedra = IrN₄C₂; grey sphere: carbon; green sphere: nitrogen; orange sphere: oxygen). C···O interactions between [Ir]⁺ complexes and α -[Mo₈O₂₆]⁴⁻ units are displayed as dotted lines. The hydrogen atoms are omitted for clarity.

Fig. S3. Mixed polyhedral and ball-and-stick representations of the crystal packing in Ir_2Mo_4 . (a) $[Mo_4O_{10}(OCH_3)_6]^{2-}$ and $[Ir]^+$ complex sheets are stacked along the crystallographic *a* axis. (b) The $[Ir]^+$ complexes form honeycomb-like layers in the (bc) plane. (c) Two $[Ir]^+$ complexes strongly interact with the POM surfaces via electrostatic interactions with C···O distances shorter than the sum of the van der Waals radii of the concerned atoms, which suggests a high degree of π - π overlapping conducive to efficient intermolecular charge transfer transitions. (blue octahedra = MoO₆; magenta octahedra = IrN₄C₂; grey sphere: carbon; green sphere: nitrogen; orange sphere: oxygen). C···O interactions between $[Ir]^+$ complexes and $[Mo_4O_{10}(OCH_3)_6]^2$ - units are displayed as dotted lines. The hydrogen atoms are omitted for clarity.

Fig. S4. Mixed polyhedral and ball-and-stick representations of the crystal packing in $\mathbf{Ir_2W_6}$. (a) The $[Ir]^+$ complexes form an honeycomb-like channeled architecture. The $[W_6O_{19}]^{2-}$ units form supramolecular chains ranging along the crystallographic *c* axis, and localized inside the hexagonal cavities of the $[Ir]^+$ framework. (c) Six $[Ir]^+$ complexes strongly interact with a $[W_6O_{19}]^{2-}$ unit via electrostatic interactions with C···O distances shorter than the sum of the van der Waals radii of the concerned atoms, which suggests a high degree of π - π overlapping conducive to efficient intermolecular charge transfer transitions. (blue octahedra = MoO₆; magenta octahedra = IrN₄C₂; grey sphere: carbon; green sphere: nitrogen; orange sphere: oxygen). C···O interactions between $[Ir]^+$ complexes and $[W_6O_{19}]^{2-}$ units are displayed as dotted lines. The hydrogen atoms are omitted for clarity.

In the spectra of Ir_2Mo_8-A and Ir_2Mo_8-B , the strong absorption bands in the range 1000-400 cm⁻¹ were attributed to the Mo=O and Mo-O-Mo vibration modes of the β -[Mo₈O₂₆]⁴⁻ anions. Furthermore, the absorption bands in the range 1610-1000 cm⁻¹ were mainly assigned to the C-N and C=C aromatic vibration modes of the [Ir]⁺ complex. Finally, the absorption bands in the range 3000-2850 cm⁻¹ were attributed to the C-H alkane vibration mode of the tetrabutylammonium (TBA⁺) cations.

Fig. S6. a) ¹H NMR spectrum in DMF of Ir_2Mo_8 -A. The signals denoted by Δ are related to the protons of the TBA cations whereas the signals denoted by \circ correspond to the aromatic protons of the $[Ir]^+$ complex. The integrals of the two sets of signals unambiguously indicate a TBA⁺ : $[Ir]^+$ ratio of 1 : 1; b) zoom on the aromatic protons domain; c) zoom on the aliphatic protons domain; d) TGA measurement of Ir_2Mo_8 -A.

In agreement with the chemical composition, the TGA curve of Ir_2Mo_8 -A showed three distinct weight losses of 16.67%, 10.45% and 20.50% in the temperature ranges of 250-350, 350-500 and 500-750 °C, respectively, which corresponded to endothermic effects. The first weight loss was attributed to removal of two TBA⁺ molecules (theoretical weight loss of 16.2%). The second weight loss was attributed to removal of two bpy molecules (theoretical weight loss of 10.5%). Finally, the third weight loss was attributed to removal of four ppy molecules (theoretical weight loss of 20.7%).

Fig. S7. Comparison of the experimental powder XRD pattern of Ir_2Mo_8-A (in red), and of the powder pattern calculated from the structure of Ir_2Mo_8-B solved from single-crystal X-ray diffraction data (in black).

Fig. S8. Kubelka-Munk transformed reflectivity spectra^{S9} of (a) **Ir**₂**Mo**₈**-A** (black), [Ir](PF₆) (magenta) and $((CH_3CH_2)_2NH_2)_2(NH_4)_2[\beta-Mo_8O_{26}]$ (blue); (b) **Ir**₂**Mo**₈**-B** (black), [Ir](PF₆) (magenta) and $((CH_3CH_2)_2NH_2)_2(NH_4)_2[\beta-Mo_8O_{26}]$ (blue); (c) **Ir**₄**Mo**₈ (black), [Ir](PF₆) (magenta) and $(TBA)_4[\alpha-Mo_8O_{26}]$ (blue); (d) **Ir**₂**Mo**₄ (black), [Ir](PF₆) (magenta) and $(MePPh_3)_2[Mo_4O_{10}(OCH_3)_6]$ (blue); (e) **Ir**₂**W**₆ (black), [Ir](PF₆) (magenta) and (TBA)_2[W₆O₁₉] (blue). The absorption denoted by an asterisk in the spectrum of **Ir**₂**Mo**₈-**B** was assignable to an intermolecular charge-transfer transition between [Ir]⁺ and POM molecules, due to their proximity in the crystalline state.

Fig. S9. UV-vis absorption spectra in DMF (2.10⁻⁵ mol/L) of (a) Ir_2Mo_8 -A (black), [Ir](PF₆) (red) and ((CH₃CH₂)₂NH₂)₂(NH₄)₂[β-Mo₈O₂₆] (blue); (b) Ir_2Mo_8 -B (black), [Ir](PF₆) (red) and ((CH₃CH₂)₂NH₂)₂(NH₄)₂[β-Mo₈O₂₆] (blue); (c) Ir_4Mo_8 (black), [Ir](PF₆) (red) and (TBA)₄[α-Mo₈O₂₆] (blue) (d) Ir_2Mo_4 (black), [Ir](PF₆) (red) and (MePPh₃)₂[Mo₄O₁₀(OCH₃)₆] (blue); (e) Ir_2W_6 (black), [Ir](PF₆) (red) and (TBA)₂[W₆O₁₉] (blue).

Fig. S10. Temperature-dependence of steady-state PL spectrum of Ir_2Mo_8 -A monitored at $\lambda_{exc} = 365$ nm between 90 K and 300 K.

Fig. S11. Temperature-dependence of steady-state PL spectrum of (a) Ir_4Mo_8 , (b) Ir_2Mo_4 and (c) Ir_2W_6 monitored at $\lambda_{exc} = 365$ nm between 90 K and 300 K.

Fig. S12. Time-resolved photoluminescence spectra of Ir_2Mo_8 -B, Ir_4Mo_8 , Ir_2Mo_4 , and $[Ir](PF_6)$ integrated in the sweep ranges 2 ns, 200 ns, and 2 μ s. Maximum intensities are normalized to 1.

Fig. S13. Photographs of powders of Ir_2Mo_8 -A (a) before, and (b) after exposure to acetonitrile vapor for 48 h.

Fig. S14. Evolution of the room temperature steady-state photoluminescence spectrum of Ir_2Mo_8 -A before (black) and after exposure to acetonitrile vapor for 20 min (red). Colorimetric coordinates of Ir_2Mo_8 -A (\blacksquare) before (x=0.324; y=0.554), and (\bullet) after exposure to acetonitrile vapor for 20 min (x=0.332; y=0.551).

Fig. S15. Normalized Kubelka-Munk transformed reflectivity spectra of Ir_2Mo_8 -A before (magenta) and after (red) CH₃CN vapor exposure for 24h, Ir_2Mo_8 -B (black), and Ir_2Mo_8 -A preliminary exposed to CH₃CN vapor exposure after heating at 120°C for 4h (blue).

Fig. S16. Comparisons of the experimental powder X-ray diffraction patterns of Ir_2Mo_8 -A (blue), Ir_2Mo_8 -A after an exposure for 20 days to vapor of DMF (black), and of the powder pattern calculated from the structure of Ir_2Mo_8 -B solved from single-crystal X-ray diffraction data (red). The powder XRD pattern of Ir_2Mo_8 -A after exposure to DMF vapor for 20 days (black) is mainly composed of the XRD pattern of the pristine sample Ir_2Mo_8 -A together with additional peaks corresponding to the Ir_2Mo_8 -B sample. The additional peaks are represented by asterisk on the two zoom of the global XRD pattern.

	Ir ₂ Mo ₈ -B	Ir ₄ Mo ₈	Ir ₂ Mo ₄	Ir ₂ W ₆
Empirical formula	$C_{96}H_{120}Ir_2Mo_8N_{10}O_{26}$	$C_{128}H_{96}Ir_4Mo_8N_{16}O_{26}\\$	$C_{72}H_{66}Ir_{2}Mo_{4}N_{8}O_{18}$	$C_{64}H_{48}Ir_2N_8O_{19}W_6$
Formula weight [g.mol ⁻¹]	2981.94	3810.52	2099.48	2716.60
Temperature [K]	200	298	298	298
Crystal system	Monoclinic	Monoclinic	Monoclinic	Trigonal
Space group	<i>P</i> 2 ₁ / <i>c</i>	C2/c	<i>P</i> 2 ₁ / <i>c</i>	<i>P</i> -3 <i>c</i> ₁
a [Å]	18.4219(9)	39.372(4)	12.357(1)	15.2896(2)
<i>b</i> [Å]	16.0449(8)	13.8234(12)	13.408(1)	15.2896(2)
c [Å]	18.5278(9)	29.806(3)	21.918(3)	15.6713(4)
β [°]	112.218(2)	125.343(4)	92.173(5)	120
V [Å ³]	5069.8(4)	13232(2)	3628.8(7)	3172.7(1)
Ζ	2	4	2	2
$ ho_{ m calc} [{ m g}{ m cm}^{-3}]$	1.953	1.913	1.921	2.844
μ [mm ⁻¹]	3.646	4.809	4.399	15.087
Data / Parameters	8977/648	11621/820	6475/466	3014/150
R _{int}	0.0546	0.1015	0.0471	0.0680
GOF	1.228	1.116	0.847	1.115
R_1 (>2 σ (I))	0.0679	0.0941	0.0227	0.0361
wR_2	0.1457	0.2007	0.0573	0.0982

 Table S1. X-Ray crystallographic data related to the compounds reported therein.

Table S2. Summary of photophysical properties of the five hybrid POM materials and [Ir](PF₆).

	Absorption			Steady-state Emission	
Compound	λ _{max} POM ^a (nm)	λ _{max} [lr]+ (nm)	λ _{CT} ^b (nm)	λ _{max} (nm) ^c	
[lr](PF ₆)	-	314, 340, 380, 412, 463	-	585, 505	
Ir ₂ Mo ₈ _A	296	320, 334, 374, 416, 462	-	505	
Ir ₂ Mo ₈ B	296	312, 344, 374, 414, 466	520-625	510, 585	
Ir₄Mo ₈	250	376, 402, 466	-	594	
Ir ₂ Mo ₄	270	320, 350, 372, 422, 464	-	605	
Ir₂W ₆	275	300, 336, 378, 414, 470	-	621	

^a Lower energy POM LCMT transition. ^b Range of wavelength for the charge-transfer transition. ^c performed at 298 K.

Table S3. Mean decay times τ (ns) of the main peaks obtained from time-resolved photoluminescence (TRPL) spectroscopy for all compounds in the sweep range 2 μ s.

TRPL peak(nm) Compound	510	550	580	600	610
[lr](PF ₆)	101.39	218.11	-	-	-
Ir ₂ Mo ₈ -A	78.77	-	237.03	-	-
Ir ₂ Mo ₈ -B	75.42	133.9	-	207.24	-
Ir₄Mo ₈	-	-	134.27	-	-
Ir₂Mo₄			202.60		
Ir ₂ W ₆	-	-	-	-	120.87

Table S4. Vapochromism and vapoluminescence properties of Ir_2Mo_8 -A towards solvents.

Solvent	£ª	Solubility of Ir ₂ Mo ₈ -A	Vapochromism	Vapoluminescenc e
Heptane	1.92	insoluble	-	-
Ether	4.33	insoluble	-	-
Chloroforme	4.81	insoluble	-	-
THF	7.58	insoluble	-	-
Dichloromethane	8.93	weak	Yes	Yes
Acetone	20.7	weak	Yes	Yes
Methanol	32.7	weak ^b	Yes	Yes
DMF	36.7	high	Yes	Yes
Acetonitrile	37.5	weak	Yes	Yes
Water	80	insoluble	-	-

 a Dielectric constant. b $Ir_{2}Mo_{8}\text{-}A$ was quickly converted into $Ir_{2}Mo_{4}\text{.}$

References

S1. R. D. Costa, E. Orti, H. J. Bolink, S. Graber, S. Schaffner, M. Neuburger, C. E. Housecroft and E. C. Constable, *Adv. Funct. Mater.*, 2009, **19**, 3456.

S2. C. Sanchez, J. Livage, J.P. Launay and M. Fournier, J. Am. Chem. Soc., 1983, 105, 6817.

S3. W. G. Klemperer, Inorg. Synth., 1990, 27, 74.

S4. K. Hakouk, O. Oms, A. Dolbecq, H. El Moll, J. Marrot, M. Evain, F. Molton, C. Duboc, P. Deniard, S. Jobic, P. Mialane and R. Dessapt, *Inorg. Chem.*, 2013, **52**, 555.

S5. S. Liu, S. N. Shaikh and J. Zubieta, Inorg. Chem., 1987, 26, 4303.

S6. G. M. Sheldrick, SADABS, program for scaling and correction of area detector data, University of Göttingen, Germany, 1997.

S7. R. Blessing, Acta Crystallogr., 1995, A51, 33.

S8. G. M. Sheldrick, SHELX-TL version 5.03, Software Package for the Crystal Structure Determination, Siemens Analytical X-ray Instrument Division, Madison, WI USA, 1994.

S9. P. Kubelka and F. Munk, Z. Tech. Phys., 1931, 12, 593.