Supplementary Information

Strain-mediated Type-I/Type-II Transition in MXene/Blue Phosphorene van der Waals Heterostructures for Flexible Optical/Electronic Devices

Zhonglu Guo^{1,2}, Naihua Miao^{1,2}, Jian Zhou^{1*}, Baisheng Sa^{1,3}, Zhimei Sun^{1,2}

¹School of Materials Science and Engineering, Beihang University, Beijing 100191, China

²Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China ³Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China

Figure S1

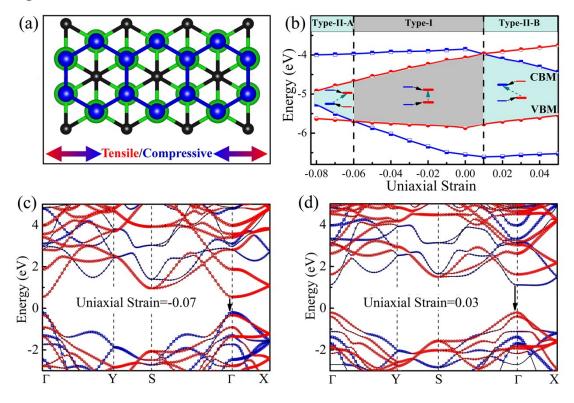


Figure S1 (a) Schematic drawing of the application of uniaxial strain. (b) The band edge positions of Zr_2CO_2 and BlueP under various uniaxial strains ranging from -0.08 to 0.05, which are illustrated by the red half circle and blue half square, respectively. Calculated band structures of Zr_2CO_2 /BlueP vdW heterostructure under uniaxial strains of (c) -0.05 and (d) 0.03 by HSE06, where the size of the red circles and blue squares in Figure S1c and d illustrate the projected weight of Zr_2CO_2 and BlueP respectively.

It can be seen that the application of uniaxial strains can also realize the transition from type-I to type-II heterostructures and reverse the band edge positions of the modulated type-II heterostructures, which are consistent with the modulation effect of biaxial strain discussed in Figure 3 of the main text.