Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Fluorescent Aryl Naphthalene Dicarboximides with Large Stokes' Shifts and

Strong Solvatochromism Controlled by Dynamics and Molecular Geometry

Robert Greiner, Thorben Schlücker⁺, Dominik Zgela and Heinz Langhals^{*}

LMU Ludwig-Maximilians-Universität München, Department Chemie Butenandtstrasse 5-13, Haus F, 81377 München (Germany) Fax: (+49) 089 2180 77640 e-mail: <u>Langhals@lrz.uni-muenchen.de</u>

Supporting Information

Table of Contents

1.	General Information	2
2.	Preparation of aryl dioxaborolanes	3
3.	Preparation of bromonaphthalene dicarboximide 2	3
4.	Analysis of the solvatochromism of naphthalimides 3	4
4.1.	Analysis of the solvatochromism of compounds 3 according to Kawski's method	4
4.2.	Analysis of solvatochromism of compounds 3	
	by means of the multi parameter approach of Kamlet, Taft and Abboud	10
4.3.	Analysis of solvatochromism of compounds 3	
	by means of the multi parameter approach of Catalán	11
5.	NMR-spectra	13
6.	IR-spectra	25
7.1.	Additional optical spectroscopy data	27
7.2.	Gaussian analysis of the fluorescence spectra of 3g in various solvents	29
8.	Solvatochromism of 3 according to Dimroth and Reichardt	39
9.	Additional optical spectra	41
10.	Quantum chemical calculations	47
11.	References	50

1. General Information

All reactions were carried out under an argon atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with argon prior to use. Available standard chemicals were applied in synthesis grade without further purification. 1-Butanol, chloroform, hexane and toluene were used in spectrophotometric grade. DMF, tetradecane and 1-undecanol were used in p.a. grade and stored over 3 Å molar sieve. Toluene and THF were continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen and stored over 4 Å molecular sieves. Yields refer to isolated compounds estimated to be > 95 % pure as determined by ¹H NMR (25 °C) and capillary GC. Chemical shifts are reported as δ -values in ppm relative to the solvent peak. NMR spectra were recorded in a solution of CDCl₃ (residual chloroform: δ = 7.27 ppm for ¹H NMR and δ = 77.0 ppm for ¹³C NMR). Abbreviations for signal coupling are as follows: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, quartet; quin, quintet; sxt, sextet; m, multiplet. Infrared spectra were recorded from 4000-400 cm⁻¹ on a Perkin 281 IR spectrometer. Samples were measured neat (ATR, Smiths Detection DuraSample IR II Diamond ATR). The absorption bands were reported in wave numbers (cm⁻¹). Mass Spectra were recorded on Finnigan MAT 95Q or Finnigan MAT 90 instrument for electron impact ionization (EI). High Resolution Mass Spectra (HRMS) were recorded on the same instrument. UV/Vis spectra were obtained with a Varian Cary 5000 spectrometer. Fluorescence spectra were obtained with a Varian Cary Eclipse spectrometer, slit width 2.5 nm. Fluorescence lifetimes τ were obtained with a PicoQuant 300 lifetime spectrometer and a PicoQuant P-C-405 as lightsorce. Column chromatography was performed using SiO₂ (0.040 – 0.063 mm, 230 – 400 mesh ASTM) from Merck if not indicated. All reagents were obtained from commercial sources and used without further purification if not otherwise stated.

2. Preparation of aryl dioxaborolanes

4-(Trimethylsilyl)phenylboronic acid and the pinacol esters of phenylboronic acid, 4methoxyphenylboronic acid, 4-(*N*,*N*-dimethylamino)phenylboronic acid and 4cyanophenylboronic acid have been purchased from commercial sources.

2-(4-Methoxynaphthalen-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 4,4,5,5-tetramethyl-2-(3,4,5-trimethoxyphenyl)-1,3,2-dioxaborolane and 2-(4-methoxy-8-methylnaphthalen-1yl)-4,4,5,5-tetra-methyl-1,3,2-dioxaborolane have been prepared by reacting the corresponding aryl bromides^{SI-1} with bis(pinacolato)diboron according to standard procedures.^{SI-2}

3. Preparation of bromonaphthalene dicarboximide 2^{SI-3}

A mixture of tridecan-7-amine (6.60 g, 33.0 mmol, 1.50 equiv) and 4-bromo-1,8-naphthalic anhydride (6.00 g, 22.0 mmol, 1.00 equiv) in ethylene glycol (50 mL) was heated at 160 °C. After 12 h, hydrochloric acid (2 M, 50 mL) was added to the reaction mixture, which was subsequently extracted with CHCl₃ (3 x 50 mL). The combined organic phases were dried over MgSO₄ and concentrated *in vacuo*. Column chromatography (CHCl₃) gave **2** as yellow oil (9.05 g, 90%).

4. Analysis of the solvatochromism of naphthalimides 3

4.1. Analysis of the solvatochromism of compounds 3 according to Kawski's method

The solvatochromism of the series of **3** was analysed with the method reported by Kawski and coworkers.^{12,SI-4} There, the function f_{BK} was established by means of equation (SI-1) and the function g_{BK} by means of equation (SI-2), respectively, where *n* is the index of refraction of the solvent and ε the relative permittivity.

$$f_{\rm BK} = \frac{2n^2 + 1}{n^2 + 2} \left(\frac{\varepsilon - 1}{\varepsilon + 2} - \frac{n^2 - 1}{n^2 + 2} \right)$$
(SI-1)

$$g_{\rm BK} = \frac{3}{2} \frac{n^4 - 1}{(n^2 + 2)^2}$$
(SI-2)

Characteristic indicators for solvent effects are m_1 obtained as the slope of a linear plot of the Stokes' shift v_{abs} - v_{flu} (in kK as wavenumbers 1000 cm⁻¹) versus f_{BK} and m_2 as the slope of the sum of the wavenumbers of the maxima of UV/Vis absorption and fluorescence v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} and are reported in Table SI-1.

Table SI-1. Slopes m_1 and m_2 and correlation numbers $r_{(m1)}$ and $r_{(m2)}$ (6 solvents except **3c** with 5 solvents; solvents: 1-Butanol, 1-undecanol, *N*,*N*-dimethylformamide, toluene (except for **3h**), *n*-hexane, *n*-tetradecane. μ_e/μ_g : Calculated ratio of dipole moments in electronically excited μ_e and the ground state μ_g . according to equation (SI-3).

Nr.	m_1	r (m1)	<i>m</i> ₂	r (m2)	$\mu_{ m e}/\mu_{ m g}$
	kK		kK		
3a	0.51	0.917	-3.00	-0.976	1.4
3b	3.06	0.989	-5.11	-0.979	4.0
3c	5.24	0.928	-10.21	-0.959	3.1
3d	5.89	0.960	-7.56	-0.978	8.0
3g	6.69	0.956	-7.21	-0.975	26.7
3h	6.32	0.957	-6.93	-0.977	21.7
3i	0.69	0.911	-2.94	-0.930	1.6
3j	3.24	0.989	-5.29	-0.975	4.2
31	5.80	0.998	-8.01	-0.992	6.2

$$\frac{\mu_{\rm e}}{\mu_{\rm g}} = \frac{|m_{\rm l}| + |m_{\rm 2}|}{|m_{\rm 2}| - |m_{\rm l}|} \tag{SI-3}$$

The ratio μ_e/μ_g according to equation (SI-3) indicates the alteration of the dipole moment in the electronically excited state μ_e and the ground state μ_g for parallel transition moments. We applied μ_e/μ_g according to equation (SI-3) as a scale for the solvent influence on the electronic spectra. A clear maximum was found for the preferred **3g** verifying the concept of twisted donor acceptor systems for strong solvatochromism. This exceeds even the effect of the prolonged electronic system in **3I**. The linear correlations on the basis of f_{BK} and g_{BK} are reported in the subsequent Fig. SI-1 to SI-9.

Fig. SI-1. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3a** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

Fig. SI-2. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3b** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

Fig. SI-3. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3c** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

Fig. SI-4. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3d** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

Fig. SI-5. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3g** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

Fig. SI-6. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3h** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

Fig. SI-7. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3i** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

Fig. SI-8. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3j** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

Fig. SI-9. Linear correlations of the Stokes' shift v_{abs} - v_{flu} (in 1000 cm⁻¹) of **3I** versus f_{BK} to obtain m_1 and of the sum v_{abs} + v_{flu} versus f_{BK} +2 g_{BK} to obtain m_2 .

4.2. Analysis of solvatochromism of compounds 3 by means of the multi parameter approach of Kamlet, Taft and Abboud

The solvatochromism of the series of **3** was analysed by means of the multi parameter approach of equation (1) developed by Kamlet, Taft and Abboud^{13,SI-5} where solvent effects were generalized to any solvent-dependent property *XYZ*. The sensitivity to dipolar-polarizability term is characterized by *s* where a correction *d* concerns the polarizability. The paramers *a* and *b* are attributed to hydrogen acceptor and donor properties. We applied equation (SI-4) to the E_T values of the fluorescence (E_T =28591 kcal·nm/ λ_{max}) of the series of **3**, obtained equation (SI-5) and optimized the parameters of equation (SI-5) by least square-fitting. The results are reported in Table SI-2 where the values *s* indicates a generally pronounced sensitivity of **3** to solvent effects. Large *s*-values were found for the favoured **3g**, but also for **3d**, **3h** and **3l**. A minor variation is found for the parameter *d* except for the dimethylaminophenyl derivative **3c**. A high value of *a* is found for the latter as one my expect for acceptors of hydrogen bonds. There are only minor variations for the other values of *a* and *b* in accordance with the lack of pronounced effects of hydrogen bonds.

$$XYZ = XYZ_0 + s \left(\pi^* + d\delta\right) + a\alpha + b\beta \tag{SI-4}$$

$$E_{\rm T} = XYZ_0 + s \left(\pi^* + d\delta\right) + a\alpha + b\beta \tag{SI-5}$$

Table SI-2. Calculated parameters XYZ_0 , *s*, *d*, *a* and *b* by means of least square fits of the experimental E_T values of fluorescence of **3** according to equation (SI-5). Solvents: 1-Butanol, *N*,*N*-dimethylformamide, chloroform, toluene, *n*-hexane.

Nr.	XYZ ₀	S	d	а	b
3a	70.71	-3.64	-0.27	-2.30	-0.83
3b	66.85	-7.32	-0.28	-3.25	-4.20
3c	61.29	-6.29	0.60	-14.37	-3.80
3d	63.62	-16.68	-0.23	-3.26	-3.95
3g	65.80	-14.22	-0.17	-6.00	-6.02
3h	64.48	-15.94	-0.20	-4.92	-3.80
3i	70.00	-3.75	-0.20	-2.24	-0.91
3j	69.51	-8.41	-0.27	-4.25	-3.38
31	65.77	-15.18	-0.39	-4.12	-4.94

4.3. Analysis of solvatochromism of compounds 3 by means of the multi parameter approach of Catalán

The multi parameter approach of equation (SI-6) of Catalán^{14,SI-6} with the generalized solvent effect *A* was applied to the *E*_T-values (*E*_T=28591 kcal·nm/ λ_{max}) of the solvatochromism of fluorescence to obtain equation (SI-7).

$$A = A_0 + bSA + cSB + dSP + eSdP$$
(SI-6)

$$E_{\rm T} = A_0 + b{\rm SA} + c{\rm SB} + d{\rm SP} + e{\rm SdP}$$
(SI-7)

We applied equation (SI-7) to the fluorescence of the series of **3** and optimized the parameters A_0 , b, c, d and e by means of least square fitting; see Table 1.

Table SI-3. Optimized parameters A_0 , b, c, d and e of equation (SI-7) by means of least square fitting of the experimental E_T -values of the fluorescence of **3** in the solvents 1-butanol, 1-undecanol, N,N-dimethylformamide, chloroform, toluene, n-hexane, n-tetradecane. (N,N-Dimethylformamide was excluded for **3c** because of lack of fluorescence). r: Correlation number.

Nr.	A ₀	b	С	d	е	r
3 a	72.6	-5.53	-0.10	-2.46	-3.72	0.9987
3b	68.7	-6.02	-3.62	-2.07	-7.36	0.9991
3c	72.6	16.33	-13.69	-12.67	-17.60	1.0000
3d	71.6	-2.02	-4.99	-10.11	-14.93	0.9984
3g	77.3	-12.74	-4.77	-16.11	-12.93	0.9989
3h	77.4	-7.30	-5.19	-18.05	-12.80	0.9995
3i	74.5	-5.10	-1.07	-6.41	-2.87	0.9953
3j	72.9	-8.83	-2.43	-4.37	-8.22	0.9998
31	66.1	-1.74	-7.49	1.15	-13.48	0.9966

The parameter *e* can be applied as a measure of the sensitivity concerning the dipolarity of the solvent SdP where high negative valued were found for the donor- substituted derivatives **3c**, **3d**, **3g**, **3h** and **3l**. The effect of a simple 4-methoxyphenyl group in **3b** is appreciably smaller. The parameter *d* for the solvent polarizability SP is found to be strongly negative for **3c**, **3d**, **3g** and **3h** indicating a boosting solvent effect of dipolarity and polarizability for these compounds. The parameters *b* and *c* concerning solvent acidity SA and solvent basicity SB are not pronounced except of *b* for **3c** because of the hydrogenbonding ability of the dimetylamino group. The *b*-value for **3g** is remarkably strong negative indicating a further co-operative solvent effect. As a consequence, compound **3g** can be estimated to be a good compromise concerning solvent effects.

6-Phenyl-2-(tridecan-7-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (3a)

6-(4-(Dimethylamino)phenyl)-2-(tridecan-7-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (3c)

6-(2,6-Dibromo-3,4,5-trimethoxyphenyl)-2-(tridecan-7-yl)-1*H*-benzo[*de*]isoquinoline-

6-(3,4,5-Trimethoxy-2,6-dimethylphenyl)-2-(tridecan-7-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (3f)

6-(4-Methoxy-8-methylnaphthalen-1-yl)-2-(tridecan-7-yl)-1*H*-benzo[*de*]isoquinoline-

1,3(2*H*)-dione (3h)

6-(4-(Trimethylsilyl)phenyl)-2-(tridecan-7-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)-dione (3i)

6-(4-Cyanophenyl)-2-(tridecan-7-yl)-1-benzo[de]isoquinoline-1,3(2H)-dione (3j)

6-(4-Iodophenyl)-2-(tridecan-7-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (3k)

6-(4'-Methoxy-[1,1'-biphenyl]-4-yl)-2-(tridecan-7-yl)-1*H*-benzo[*de*]isoquinoline-1,3(2*H*)dione (3l)

wavenumber [cm⁻¹]

- 10

wavenumber [cm⁻¹]

7.1. Additional optical spectroscopy data

Table SI-4. Overview of the spectroscopic data.

Δam Δ20.5 Δ20.7	3a λ _{Abs} a	CHCl3 355.4	Tetradecane 343.4	n-Hexane 342.2	1-Butanol 355.2	1-Undecanol 353.4	DMF 355.2	Toluene 346.8
e ^{-c} 17100 17600 16800 19000 18500 7.76 0.70 16900 φ ⁴ 3.21 3.85 3.62 sh 3.64 3.54 3.65 3.63 3.64 sh 3.64 3.64.2 3.65.6 3.68.0 3.64.2 sh 4.59.6 4.27.8 4.24.0 4.98.1 4.76.4 4.97.2 4.43.2 φ ⁴ 0.83 0.79 0.65 0.83 0.83 0.82 0.75 st 3.21 2.25 5.18 4.76.4 4.97.2 4.43.2 st 4.13 3.12 2.65 5.18 4.76.4 4.97.2 4.43.2 st 4.26.2 40.3 4.01.2 4.30.3 0.83 0.82 0.75 st 4.26.7 6.38.4 61.00 3.38 4.82 0.35 5.51 5.12 st 3.61 3.77 3.54.8 3.61.4 3.62.6 365.6 366.8								
φ 0.78 0.094 0.076 0.95 0.76 0.74 0.50 r* 3.61 3.62 3.62 Aba* 364.8 356.4 354.2 366.2 365.6 368.0 364.3 e < 16700 16700 16700 16700 16700 16600 16800 φ 4 0.83 0.79 0.65 0.83 0.83 0.82 0.75 q* 4.11 3.12 2.65 5.18 4.78 5.24 3.38 de* 11200 16500 12300 13000 10700 10800 φ* 11200 16508 0.73 0.70 0.013 0.14 0.0037 0.651 de* 11200 16500 1700 16500 1500 1500 16000 d** 6.62 2.51 444.3 40.2 57.1 58.4 49.4 d** 15300 1200 14002 22.6 0.055 0.19 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
r sho3.523.52Atusa3.64.83.56.43.54.23.66.23.65.63.68.03.64.2Atusa4.59.64.27.84.24.04.98.14.76.44.97.24.4.3.0 0° 0.830.790.650.830.830.820.75 0° 0.830.790.650.830.830.820.75 0° 4.133.122.655.184.785.240.75 0° 4.26.74.38.44.52.40.380.700.0130.140.00370.65 0° 0.640.730.700.0130.140.00370.650.730.700.0130.140.00370.65 0° 0.640.730.700.0130.140.00370.650.710.710.720.760.72								
bh state s			0.054	0.070		0.70		0.50
μμμ ² μμμ ² 356.4354.2366.2365.6368.064.2μμμ ² ε*15900171001670016400φ ⁴ 0.830.790.650.830.830.820.75σ*4.113.122.655.184.785.243.505c		5.21			5.05		5.02	
μm μm φ479.6477.8424.0498.1476.4477.2443.2φ1500157001570015700167001640016400f*0.830.790.650.830.830.820.75f*4.113.122.655.184.785.243.50sc3.22428.6433.8418.2Ams*456.2403.8401.2430.2428.6433.8418.2Ams*578.4469.8462.7638.4610.0522.4e^41020165001230010300118001070010800φ0.640.730.700.0130.140.00370.65r*6.993.613.473.505.51512512sd352.1442.3440.2572.1526.4618.8492.4e^5159001700016500166001500017000160017000d*0.650.510.410.0220.260.00650.710d*6.622.782.330.238323.8342.0e*15900171001650016200186001500016000d*0.430.330.080.230.130.18e*325.0327.2326.6327.8329.0328.8328.8e*171001600016800181001590017000<		364.8	356.4	354.2	366.2	365.6	368.0	364.2
e ⁻ 16700 17100 16700 16700 16400 φ400 φ ⁻⁴ 0.83 0.79 0.65 5.83 0.83 0.82 0.75 σr 4.11 3.12 2.65 5.18 4.73 5.24 3.52 σe -								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							-	
r*4.113.122.655.184.785.243.503c								
st stop								
λ _{Abs} ^a 426.2403.8401.2430.2428.6433.8418.2λ _{elug} ^b 578.4469.8462.7638.4610.0532.4Q ^c 11200165001230010300118001070010800Q ^d 0.640.730.700.0130.140.00370.55Jan3.613.473.505.515.125.12Jan3.61.3361.4362.6365.6360.8Anba ^a 362.2357.0354.8361.4362.6365.6Anba ^a 355.1442.3440.2572.1526.4618.8492.4e ^c 159001710016500166001650017000t ^a 6.622.782.030.2081.750.1195.40Jans ^{ba} 325.0322.6323.6523.8323.8324.0Jans ^{ba} 325.0322.6323.6523.8323.81.50Jans ^{ba} 329.0327.2326.6327.852.03.851.50Jans ^{ba} 329.0327.2326.6327.832.03.28.3328.9Jans ^{ba} 329.0327.2326.6327.832.03.011.59Jans ^{ba} 329.0327.2326.6327.832.03.011.59Jans ^{ba} 329.0327.2326.637.832.03.011.59Jans ^{ba} 329.0327.2326.637.832.03		7.11	5.12	2.05	5.10	4.70	5.24	5.50
Anab578.4469.8462.7638.4610.0532.4e ⁻ 11200165001230010300118001070010800p ⁴ 0.640.730.700.0130.140.00370.65r*6.993.613.473.505.515.12sd362.2357.0354.8361.4362.6365.6360.8Åchs*352.1442.3440.2572.152.6.4618.8492.4e ⁻⁶ 159001700016500166001650017000p ⁴ 0.650.510.410.0220.260.00650.71r*6.622.782.030.2081.750.1195.0sg		426.2	403.8	401.2	430.2	428.6	433.8	418.2
e ^c 11200 15500 12300 10300 11800 10700 10800 φ ⁻⁴ 0.64 0.73 0.70 0.013 0.14 0.037 0.655 gr 6.99 3.61 3.47 3.50 5.51 5.51 gr 362.2 357.0 354.8 361.4 362.6 365.6 0.68 d _{hub} ^b 525.1 442.3 440.2 572.1 526.4 618.8 492.4 e ^c 15900 17100 16500 16600 16900 16500 1700 g ^a 0.65 0.51 0.41 0.022 0.26 0.0065 0.71 r ^a 6.62 2.78 2.03 0.28 1.75 0.119 5.40 g ^a 325.0 322.6 323.6 323.8 323.8 323.8 324.0 g ^a 0.39 0.34 0.33 0.088 0.23 0.13 0.18 g ^a 4.07 1.83 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15516</td> <td></td>							15516	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							10700	
r*6.993.613.473.505.515.12adadadadwa362.2357.0354.8361.4362.6365.6369.8kpub525.1442.3440.2572.1526.4618.8492.4e*15900171001650016600169001650017000p#6.622.782.030.2081.750.1195.403g325.0322.6322.6323.6323.8323.8324.0Achua*325.0322.6322.6323.6323.8323.8324.0pe*153001620014900152001520016000\$p*1.330.0880.230.130.18\$p*329.0327.2326.6327.8329.0328.8328.8\$p*329.0327.2326.6327.8329.0328.8328.8\$p*329.0327.2326.6327.8329.0328.8328.8\$p*344.40.340.470.280.0550.19\$p*1.881.881.041.59001.7001.6900\$p*4.734.704.6601.8001.9001.59001.6900\$p*4.74410.8407.4434.3357.6355.0356.0351.4\$p*4.74410.8407.4480.0191001790018200\$p*4.753.76	-							
biλAms ² 352.1357.0354.8361.4362.6365.6360.8ΔAms ² 525.1442.3440.2572.1526.4618.8492.4e ^C 15900171001650016000169001650017000φ ^d 0.650.510.410.0220.260.00650.71ge6622.782.030.2081.750.1195.40Be	-						0.0007	
λ_{Aus}^{a} 362.2357.0354.8361.4362.6365.6360.8 λ_{ruo}^{b} 525.1442.3440.2572.1526.4618.8492.4 e^{c} 15900171001650016600169001650017000 ϕ^{d} 0.650.510.410.0220.260.00650.71 r^{*} 6.622.782.030.2081.750.1195.40 B_{aus}^{a} 325.0322.6322.6323.6323.8323.8324.0 λ_{ruo}^{b} 509.7431.7427.1576.8532.4581.8478.0 e^{c} 15300162001490016200188001520016000 ϕ^{d} 0.390.340.330.0880.230.130.18 r^{*} 4.071.831.701.804.853.851.53 B u </td <td>•</td> <td>0.55</td> <td>5.01</td> <td>5.47</td> <td>5.50</td> <td>5.51</td> <td></td> <td>5.12</td>	•	0.55	5.01	5.47	5.50	5.51		5.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		362.2	357.0	354.8	361.4	362.6	365.6	360.8
e^{c} 1590017100165001660016900165001700 ϕ^{d} 0.650.510.410.0220.260.00650.71 $3g$ $3g$ 325.0 322.6322.6323.6323.8323.8324.0 λ_{arwa}^{b} 509.7431.747.1576.8532.4581.8478.0 e^{c} 15300162001490016200188001520016000 ϕ^{d} 0.390.340.330.0880.230.130.18 r^{e} 4.071.831.701.804.853.851.53 B e^{c} 171001600016800181001590037.0059.8 A_{arwa}^{a} 329.0327.2326.637.8329.0328.8328.8 A_{arwa}^{a} 329.0327.2326.637.8329.0328.8328.8 A_{arwa}^{a} 329.0328.8328.01.531.53 g^{e} 17100160001680018100159001700016900 ϕ^{d} 0.400.340.340.0470.280.0550.19 g^{e} 356.0344.4343.4357.6355.0356.0353.4 A_{arwa}^{a} 356.0344.4343.4357.6355.0356.0353.4 A_{arwa}^{a} 366.4356.2355.6367.8365.8367.8366.4351 g^{e} 1360012600								
φ a0.650.510.410.0220.260.00650.71re6.622.780.2081.750.1195.403g325.0322.6322.6323.6323.8323.8324.0λaba ^b 509.7431.7427.1576.8532.4581.8478.0φ 40.390.340.330.0880.230.130.18φ 40.390.340.330.0880.230.130.18re4.071.831.701.804.853.851.503h22.7440.2434.8570.1537.0597.8487.0φ 40.400.340.340.0470.280.0550.19re4.141.891.881.053.103.011.593i356.0344.4343.4357.6355.0356.0353.4Aaba ^b 356.0344.4343.4357.6355.0356.0353.4Aaba ^b 356.0344.4343.4357.6355.0366.0354.4Aaba ^b 356.0364.4363.33.813.382.03g e3085.08367.8366.3364.3364.3abab ^b 3085.08367.8367.8367.8367.8g e3.085.08367.8365.8367.8364.3aba ^b 30430.22.112.122.151.65g e								
re6.622.782.030.2081.750.1195.403gλata ^a 325.0322.6322.6323.6323.8323.8324.0 <i>a</i> trua ^b 509.7431.7427.1576.8532.4581.8478.0 <i>a</i> ^c 15300162001490016200188001520016000 <i>φ</i> ^d 0.390.340.330.0880.230.130.18 <i>a</i> ^c 4.071.831.701.804.85355.1357 <i>h</i> 322.7326.6327.8329.0328.8328.8 <i>a</i> tas ^a 329.0327.2326.6327.8329.0328.8328.8 <i>a</i> tas ^a 329.0327.2326.6327.8329.0328.8328.8 <i>a</i> tas ^a 329.0327.2326.6327.8329.0328.8328.8 <i>a</i> tas ^a 329.0327.7430.2437.015901700016900 <i>φ</i> ^d 0.400.340.340.0470.280.0550.19 <i>r</i> 4.141.891.881.053.103.011.59 <i>ss</i> 356.0344.4343.4357.6355.0356.0353.4 <i>δ</i> 425.4407.0406.7434.2430.6432.7416.7 <i>c</i> 13601300179001800017900180001910017900 <i>φ</i> ^d 0.790.180.140.890.85	-							
3g Assa ³ 325.0322.6322.6323.8323.8323.8324.0Aqueb509.7431.7427.1576.8532.4581.8478.0 e^c 15300162001490016200188001520016000 ϕ^d 0.390.340.330.0880.230.130.18 r^e 4.071.831.701.804.853.851.53 Bh Aeb^a 329.0327.2326.6327.8329.0328.8328.8 $\dot{q}iuo^b$ 522.7440.2434.8570.1537.0597.8487.0 e^c 17100160001680018100159001700016900 ϕ^a 0.400.340.340.0470.280.0550.19 r^e 4.141.891.881.053100159001700018200 ϕ^a 0.400.340.340.0470.280.0550.19 r^e 4.25.4407.0406.7434.2430.6432.7416.7 e^c 188001740018600191001790018200 ϕ^a 0.790.180.140.890.850.640.51 e^c 188001740016600240022800228002280 ϕ^a 0.540.550.510.75478.3427.5 e^c 1880017400	-							
λ_{hb}^{3} 325.0322.6322.6323.6323.8323.8324.0 A_{chu}^{0} 509.7431.7427.1576.8532.4581.8478.0 e^{c} 15300162001480015200158001520016000 d^{d} 0.390.340.330.0880.230.130.18 r^{e} 4.071.831.701.804.853.851.53 3h A_{abs}^{a} 329.0327.2326.6327.8329.0328.8328.8328.8 ∂_{ahu}^{b} 522.7440.2434.8570.1537.0597.8487.0 e^{c} 17100160001680018100159001700016900 p^{d} 0.400.340.340.0470.280.0550.19 r^{e} 4.141.891.881.053.103.011.59 si a_{abs}^{a} 356.0344.4343.4357.6355.0356.0353.4 a_{abu}^{b} 425.4407.0406.7434.2430.6432.7416.7 e^{c} 18600188001740018600191001790018200 p^{e} 3.085.083.633.813.382.03 a_{abu}^{a} 366.4356.2355.6367.8365.8367.8364.6		0.01	2.70	2.00	0.200	2.70	0.220	0110
d_{huo}^{b} 509.7431.7427.1576.8532.4581.8478.0 e^{ϵ} 15300162001490016200188001520016000 ϕ^{d} 0.390.340.330.0880.230.130.18 r^{ϵ} 4.071.831.701.804.853.851.53 3h		325.0	322.6	322.6	323.6	323.8	323.8	324.0
e ^{-c} 15300 16200 14900 16200 18800 15200 16000 φ ^{-d} 0.39 0.34 0.33 0.088 0.23 0.13 0.18 re 4.07 1.83 1.70 1.80 4.85 3.85 1.53 h 329.0 327.2 326.6 327.8 329.0 328.8 328.8 λ _{Abs} ^a 522.7 440.2 434.8 570.1 537.0 597.8 487.0 φ ⁻⁶ 17100 16000 16800 15100 15900 17000 16900 φ ⁻⁴ 0.40 0.34 0.34 0.047 0.28 0.055 0.19 re 4.14 1.89 1.88 1.05 3.10 3.01 1.59 3i 3 356.0 344.4 343.4 357.6 355.0 356.0 353.4 λ _b ^a 3.60 18800 17400 18600 19100 17900 18200								
φ a0.390.340.330.0880.230.130.18re4.071.831.701.804.853.851.53Jh </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
r°4.071.831.701.804.853.851.53Bhλabs ^a 329.0327.2326.6327.8329.0328.8328.8λarbo ^b 522.7440.2434.8570.1537.0597.8487.0e ^c 17100160001680018100159001700016900Ø d0.400.340.340.0470.280.0550.19r°4.141.891.881.05351.03.011.59JiJiJi356.0344.4343.4357.6355.0356.0353.4Abro ^a 356.0188001740018600191001790018200Ø d0.790.180.140.890.850.640.51re3085.0855.6367.8365.8367.8364.4Jabs ^a 366.4356.2355.6367.8365.8367.8364.6Jelue ^b 447.4410.8407.4480.0457.5478.3427.5e ^c 23700264002260024100246002280022400Ø ^d 0.540.530.700.710.550.51r ^e 1.340.9941.022.212.122.151.16JuAbs ^a 364.7356.0354.0366.0369.4369.0364.8Ju36357.6354.0366.0369.4369.0364.9	-							
hλ _{Abs} a329.0327.2326.6327.8329.0328.8328.8λ _{Abs} a522.7440.2434.8570.1537.0597.8487.0e^17100160001680018100159001700016900Ød0.400.340.0470.280.0550.19r^e4.141.891.881.053.103.011.59Bi </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\lambda_{e^{c}}$ 522.7440.2434.8570.1537.0597.8487.0 e^{c} 17100160001680018100159001700016900 ϕ^{d} 0.400.340.340.0470.280.0550.19 τ^{e} 4.141.891.881.053.103.011.59 3i 356.0344.4343.4357.6355.0356.0353.4 λ_{abs}^{a} 356.0344.4343.4357.6355.0356.0353.4 λ_{abw}^{b} 425.4407.0406.7434.2430.6432.7416.7 e^{c} 18600188001740018600191001790018200 ϕ^{d} 0.790.180.140.890.850.640.51 τ^{e} 366.4356.2355.6367.8365.8367.8364.6 λ_{abs}^{a} 366.4356.2355.6367.8365.8367.8364.6 λ_{abs}^{a} 366.4356.2355.6367.8365.8367.8364.6 λ_{abs}^{a} 366.4356.2355.6367.8365.8367.8364.6 λ_{abs}^{a} 366.4356.2355.6367.8365.8367.8364.6 λ_{abs}^{a} 366.4357.6354.0366.0369.4369.024800 ϕ^{d} 0.540.530.700.710.550.51 τ^{e} 237002930028300 <th< td=""><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td></th<>		-		-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	λ_{Abs}^{a}	329.0	327.2	326.6	327.8	329.0	328.8	328.8
e ^c 17100 16000 16800 18100 15900 17000 16900 φ ^d 0.40 0.34 0.34 0.047 0.28 0.055 0.19 r ^e 4.14 1.89 1.88 1.05 3.10 3.01 1.59 3i 356.0 344.4 343.4 357.6 355.0 356.0 353.4 Åabs ^a 356.0 344.4 434.4 357.6 355.0 356.0 353.4 Åabs ^a 356.0 344.4 434.4 357.6 355.0 356.0 353.4 Åabs ^a 356.0 344.4 343.4 357.6 355.0 356.0 353.4 Åabso 425.4 407.0 406.7 434.2 430.6 432.7 416.7 e ^c 18600 18800 17400 18600 19100 17900 18200 j ^d 365.4 355.0 367.8 365.8 367.8 364.6 Åabs ^a 366.4 356.2 355.6 367.8 365.8 36		522.7	440.2	434.8	570.1	537.0	597.8	487.0
re4.141.891.881.053.103.011.59 3i λ_{Abs}^a 356.0344.4343.4357.6355.0356.0353.4 λ_{pluo}^b 425.4407.0406.7434.2430.6432.7416.7e^c18600188001740018600191001790018200 ϕ^d 0.790.180.140.890.850.640.51 τ^e 3.085.083.633.813.382.03 3j11 1.40480.0457.5478.3427.5 e^c 23700264002260024100246002280022400 ϕ^d 0.540.530.700.710.550.51 r^e 1.340.9941.022.212.151.65 3i 364.7354.0366.0369.4369.0364.8 λ_{abs}^a 364.4357.6354.02.212.151.65 3i1 1.340.530.700.710.550.51 τ^e 1.340.57354.0366.0369.4369.0364.8 λ_{abs}^a 364.4357.6354.0366.0369.4369.0364.8 λ_{re} 2.331.6531.258.4454.6 e^c 2.75002.93002.83002.75002.8302.83002.7500 ϕ^d 0.670.500.500.160.56		17100	16000	16800	18100	15900	17000	16900
3i λ _{Abb} s ³ 356.0344.4343.4357.6355.0356.0353.4λ _{Fluo} b425.4407.0406.7434.2430.6432.7416.7e ^c 18600188001740018600191001790018200Ø ^d 0.790.180.140.890.850.640.51τ ^e 3.085.083.633.813.382.03 3j Jλ _{Abb} s ³ 366.4356.2355.6367.8365.8367.8364.6λ _{Fluo} b447.4410.8407.4480.0457.5478.3427.5e ^c 23700264002260024100246002280022400Ø ^d 0.540.530.700.710.550.51τ ^e 1.340.9941.022.212.122.151.16 3i3 457.6354.0366.0369.4369.0364.8λ _{Abb} a ^a 364.4357.6354.0366.0369.4369.0364.8λ _{Fluo} b492.2436.7426.8556.6518.2583.4454.6e ^c 27500293002830027500268002830027500Ø ^d 0.670.500.500.160.560.150.40t ^r 2.931.431.351.053.211.911.40aAbsorption maxima in nm; ^b fluorescere maxima in nm; ^c maxima in nm; ^c	arPhi d	0.40	0.34	0.34	0.047	0.28	0.055	0.19
λ_{Abs}^{a} 356.0344.4343.4357.6355.0356.0353.4 $\lambda_{\text{Fluo}}^{b}$ 425.4407.0406.7434.2430.6432.7416.7 e^{c} 18600188001740018600191001790018200 \mathcal{O}^{d} 0.790.180.140.890.850.640.51 τ^{e} 3.085.08363.33.813.382.03 3j	τ ^e	4.14	1.89	1.88	1.05	3.10	3.01	1.59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3i							
e^{c} 18600188001740018600191001790018200 ϕ^{d} 0.790.180.140.890.850.640.51 τ^{e} 3.085.083.633.813.382.03 3j	λ _{Abs} a	356.0	344.4	343.4	357.6	355.0	356.0	353.4
e^{c} 18600188001740018600191001790018200 d^{d} 0.790.180.140.890.850.640.51 τ^{e} 3.085.083.633.813.382.03 \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} \mathbf{J} λ_{Abs}^{a} 366.4356.2355.6367.8365.8367.8364.6 λ_{Fluo}^{b} 447.4410.8407.4480.0457.5478.3427.5 e^{c} 23700264002260024100246002280022400 \mathcal{D}^{d} 0.540.540.530.700.710.550.51 τ^{e} 1.340.9941.022.212.122.151.16 \mathbf{J} \mathbf{J} \mathbf{J} 366.0369.4369.0364.8 λ_{Abs}^{a} 364.4357.6354.0366.0369.4369.0364.8 λ_{Abs}^{a} 364.4357.6354.0366.0369.4369.0364.8 λ_{Abs}^{a} 364.4357.6354.0366.0369.4369.0364.8 λ_{abs}^{a} 364.4357.6354.0366.0369.4369.0364.8 λ_{abs}^{a} 364.4357.6354.0366.0369.4369.0364.8 λ_{abs}^{a} 364.4357.6354.0366.0369.4369.02830027500 d^{a} 0.67 <t< td=""><td>$\lambda_{Fluo}{}^{b}$</td><td>425.4</td><td>407.0</td><td>406.7</td><td>434.2</td><td>430.6</td><td>432.7</td><td>416.7</td></t<>	$\lambda_{Fluo}{}^{b}$	425.4	407.0	406.7	434.2	430.6	432.7	416.7
τ°3.085.083.633.813.382.03 33 <th< td=""><td><i>e</i> ^c</td><td>18600</td><td>18800</td><td>17400</td><td>18600</td><td>19100</td><td>17900</td><td>18200</td></th<>	<i>e</i> ^c	18600	18800	17400	18600	19100	17900	18200
Jj λ _{Abs} ^a 366.4356.2355.6367.8365.8367.8366.4λ _{Fluo} b447.4410.8407.4480.0457.5478.3427.5e c23700264002260024100246002280022400Ø d0.540.540.530.700.710.550.51τ e1.340.9941.022.212.122.151.16 JlX _{Abs} ^a 364.4357.6354.0366.0369.4369.0364.8λ _{Abs} ^a 364.4357.6354.0366.6518.2583.4454.6e c27500293002830027500268002830027500Ø d0.670.500.500.160.560.150.40τ e2.931.431.351.053.211.911.40	arPhi d	0.79	0.18	0.14	0.89	0.85	0.64	0.51
λ_{Abs}^a 366.4356.2355.6367.8365.8367.8367.8364.6 λ_{Fluo}^b 447.4410.8407.4480.0457.5478.3427.5 e^c 23700264002260024100246002280022400 ϕ^d 0.540.530.700.710.550.51 τ^e 1.340.9941.022.212.122.151.16 \mathbf{J} λ_{Abs}^a 364.4357.6354.0366.0369.4369.0364.8 λ_{Fluo}^b 492.2436.7426.8556.6518.2583.4454.6 e^c 27500293002830027500268002830027500 ϕ^d 0.670.500.500.160.560.150.40 τ^e 2.931.431.351.053.211.911.40absorption maxima in nm; ^b fluorescere maxima in nm; ^c molar extinction coefficients in		3.08	5.08		3.63	3.81	3.38	2.03
λ _{Fluo} b447.4410.8407.4480.0457.5478.3427.5e c23700264002260024100246002280022400Φ d0.540.530.700.710.550.51τ e1.340.9941.022.212.122.151.16 3l λ _{Abs} a364.4357.6354.0366.0369.4369.0364.8λ _{Fluo} b492.2436.7426.8556.6518.2583.4454.6e c27500293002830027500268002830027500Φ d0.670.500.500.160.560.150.40τ e2.931.431.351.053.211.911.40aAbsorption maxima in mm; bfluorescere maxima in nm; c molar extinction coefficients in	Зј							
e ^c 23700264002260024100246002280022400Φ ^d 0.540.540.530.700.710.550.51τ ^e 1.340.9941.022.212.122.151.16 3 J364.4357.6354.0366.0369.4369.0364.8λ _{Abs} ^a 364.4357.6354.0266.6518.2583.4454.6e ^c 27500293002830027500268002830027500Φ ^d 0.670.500.500.160.560.150.40τ ^e 2.931.431.351.053.211.911.40	λ_{Abs}^{a}	366.4	356.2	355.6	367.8	365.8	367.8	364.6
	λ _{Fluo} b	447.4	410.8	407.4	480.0	457.5	478.3	427.5
τ°1.340.9941.022.212.122.151.16 SI </td <td><i>e</i> ^c</td> <td></td> <td></td> <td></td> <td></td> <td>24600</td> <td></td> <td></td>	<i>e</i> ^c					24600		
3I λ _{Abs} a364.4357.6354.0366.0369.4369.0364.8λ _{Fluo} b492.2436.7426.8556.6518.2583.4454.6e^c27500293002830027500268002830027500Φ ^d 0.670.500.160.560.150.40τ ^e 2.931.431.351.053.211.911.40aAbsorption maxima in nm; ^b fluorescerce maxima in nm; ^c molar extinction coefficients in	arPhi d	0.54	0.54		0.70	0.71	0.55	0.51
λ_{Abs}^{a} 364.4357.6354.0366.0369.4369.0364.8 λ_{Fluo}^{b} 492.2436.7426.8556.6518.2583.4454.6 e^{c} 27500293002830027500268002830027500 Φ^{d} 0.670.500.160.560.150.40 τ^{e} 2.931.431.351.053.211.911.40aAbsorption maxima in nm; ^b fluorescerce maxima in nm; ^c molar extinction coefficients in	τ ^e	1.34	0.994	1.02	2.21	2.12	2.15	1.16
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31							
e^{c} 27500293002830027500268002830027500 ϕ^{d} 0.670.500.500.160.560.150.40 τ^{e} 2.931.431.351.053.211.911.40a Absorption maxima in nm; ^b fluorescence maxima in nm; ^c molar extinction coefficients in	λ_{Abs}^{a}							
τ^{e} 2.93 1.43 1.35 1.05 3.21 1.91 1.40 ^a Absorption maxima in nm; ^b fluorescence maxima in nm; ^c molar extinction coefficients in	-							
^a Absorption maxima in nm; ^b fluorescence maxima in nm; ^c molar extinction coefficients in								
•	•							
L mol ⁻¹ cm ⁻¹ ; ^d fluorescence quantum yields, exc = λ_{max} , reference: <i>N</i> , <i>N</i> '-Bis(tridecan-7-	-							
	L mol ⁻¹ cm ⁻	¹ ; ^d fluores	cence quantu	ım yields,	$exc = \lambda_{max}$,	reference: <i>N</i>	<i>V,N</i> '-Bis(tric	lecan-7-

yl)perylene-3,4:9,10-tetracarboxylic diimide with Φ = 1.00; ^efluorescence lifetimes in ns.

	<i>n-</i> He	xane	Tetrad	lecane	Tolu	iene	Chlor	oform	1-Und	ecanol	1-Bu	tanol	DI	MF
	Abs.ª	Fluo. ^ь	Abs.ª	Fluo. ^ь	Abs. ^a	Fluo. ^ь	Abs. ^a	Fluo. ^b						
3a	48.4	58.5	51.6	59.6	52.0	60.2	52.2	63.2	51.8	67.4	48.8	67.7	52.2	66.4
3b	54.4	64.5	53.6	64.4	60.2	70.8	60.4	74.0	58.2	88.0	64.8	90.9	62.8	93.1
3c	76.4	66.2	79.0	70.8	88.4	83.8	85.0	101.0	92.4	164.1	109.4	205.0	93.2	
3d	54.0	70.4	59.6	71.2	62.8	86.6	64.0	104.1	61.8	134.9	66.8	160.1	68.0	
3g	83.8	66.4	76.2	67.1		77.8	81.2	91.6		122.3	83.4	141.5		135.5
3h	79.2	68.2	81.8	67.3		83.5	82.4	95.6	50.6	123.5	82.0	150.0		143.0
3i	50.2	59.2	52.2	60.2	53.0	62.4	53.2	65.9	53.8	70.9	52.2	69.4	53.8	68.2
3j	56.4	57.1	53.2	57.9	52.8	60.7	54.6	71.9	57.9	87.0	58.8	89.0	60.2	90.7
31	56.4	65.9	57.6	66.6	60.2	74.7	60.4	90.9	63.8	127.1	63.6	154.6	64.2	152.7

*Full width at half maximum, experimental determination. a) FWHM of absorption in eV; b) FWHM of fluorescence in nm.

Table SI-6. FWHM*-values of experimental absorption and fluorescence spectra of 3 in	eV.

	<i>n-</i> He	xane	Tetrad	lecane	Tolu	iene	Chlor	oform	1-Und	ecanol	1-Bu	tanol	DI	MF
	Abs. ^a	Fluo.⁵	Abs. ^a	Fluo.⁵	Abs. ^a	Fluo.⁵	Abs.ª	Fluo.⁵	Abs. ^a	Fluo.⁵	Abs. ^a	Fluo.⁵	Abs.ª	Fluo. ^b
3a	0.518	0.452	0.552	0.456	0.537	0.434	0.530	0.436	0.531	0.460	0.496	0.444	0.530	0.442
3b	0.546	0.443	0.529	0.435	0.580	0.433	0.571	0.419	0.544	0.466	0.612	0.446	0.590	0.454
3c	0.617	0.360	0.629	0.374	0.657	0.354	0.589	0.359	0.649	0.558	0.781	0.642	0.627	
3d	0.540	0.426	0.594	0.423	0.614	0.429	0.626	0.450	0.593	0.580	0.653	0.606	0.656	
3g	1.011	0.420	0.926	0.419		0.411	0.974	0.423		0.520	1.014	0.518		0.482
3h	0.972	0.415	1.018	0.404		0.426	0.983	0.420	0.547	0.533	0.982	0.553		0.494
3i	0.531	0.445	0.547	0.448	0.542	0.440	0.534	0.441	0.546	0.472	0.526	0.443	0.541	0.444
3j	0.576	0.403	0.531	0.403	0.512	0.395	0.514	0.434	0.547	0.511	0.559	0.471	0.566	0.479
31	0.567	0.436	0.569	0.433	0.576	0.435	0.568	0.451	0.600	0.584	0.598	0.603	0.601	0.548

*Full width at half maximum, experimental determination. a) FWHM of absorption in eV; b) FWHM of fluorescence in eV.

7.2. Gaussian analysis of the fluorescence spectra of 3g in various solvents

A Gaussian analysis on the basis of equation (SI-8)^{SI-7} was applied to the fluorescence spectra of **3g** in the solvents chloroform, *n*-tetradecane, *n*-hexane, 1-butanol, *N*,*N*dimethylformamide, 1-undecanol and toluene where $I_{(\lambda)}$ means the intensity of fluorescence depending on the wavelengths λ .

$$I_{(\lambda)} = \sum_{i=0}^{n} I_{\max(i)} e^{-100 \frac{\left(\frac{1}{\lambda} - \frac{1}{\lambda_{\max(i)}}\right)^2}{2\sigma_{(i)}^2}}$$
(SI-8)

$$E_{(\lambda)} = \sum_{i=0}^{n} E_{\max(i)} e^{-100 \frac{\left(\frac{1}{\lambda} - \frac{1}{\lambda_{\max(i)}}\right)^2}{2\sigma_{(i)}^2}}$$
(SI-9)

 $I_{\max(i)}$ means the intensity maxima of the individual Gaussian bands *i* with the position $\lambda_{\max(i)}$ and the sigma width $\sigma_{(i)}$. The similar equation (SI-9) can be used for the light absorption with the absorptivity *E*. A number of *n* = 8 Gaussian band is sufficient for the description of the fluorescence spectra of the series of **3** reported in Table SI-7. Further Gaussian bands do not improve the results.

Solvent	CHCl₃	Tetradecane	<i>n</i> -Hexane	1-Butanol	DMF	1-Undecanol	Toluene
$\lambda_{\max}(1)^{a)}$	365.1	338.2	338.2	357.3	372.4	354.3	373.1
2 <i>d</i> ²(1) ^{b)}	4.373	4.477	4.539	0.156	6.189	2.177	2.816
I _{max} (1) ^{c)}	0.001	0.032	0.004	0.032	0.033	0.067	0.033
λ _{max} (2) ^{a)}	385.0	366.2	361.4	378.6	422.4	394.0	399.3
2 o²(2) ^{b)}	1.803	1.710	1.381	3.445	1.468	4.860	1.639
I _{max} (2) ^{c)}	0	0.027	0.017	0.137	0.021	0.172	0.013
λ _{max} (3) ^{a)}	405.5	385.4	392.1	409.1	392.4	660.7	410.7
2 d²(3) ^{b)}	4.160	0.696	2.233	6.261	3.521	26.413	12.789
I _{max} (3) ^{c)}	0.003	0.02	0.027	0.087	0.082	0.035	0.016
$\lambda_{\max}(4)^{a)}$	488.0	412.9	410.9	509.7	547.3	457.2	465.2
2 &(4) ^{b)}	1.695	0.731	0.556	3.446	2.307	4.390	1.455
I _{max} (4) ^{c)}	0.294	0.183	0.215	0.173	0.585	0.109	0.799
$\lambda_{\max}(5)^{a)}$	505.3	423.3	420.0	542.8	594.6	502.7	493.2
2 <i>d</i> ²(5) ^{b)}	1.798	0.463	0.362	1.841	1.766	2.805	0.971
I _{max} (5) ^{c)}	0.637	0.518	0.223	0.54	0.632	0.432	0.431
$\lambda_{\max}(6)^{a)}$	535.4	433	428.6	571.7	641.5	538.3	520.5
2 &(6) ^{b)}	1.094	0.321	0.762	0.956	0.88	2.179	1.364
I _{max} (6) ^{c)}	0.377	0.153	0.685	0.224	0.164	0.591	0.38
$\lambda_{\max}(7)^{a)}$	565.5	449.6	448.6	606.6	678.9	579.2	556.1
2 ∂²(7) ^{b)}	0.959	1.303	0.662	1.809	0.119	1.379	0.97
I _{max} (7) ^{c)}	0.219	0.879	0.546	0.608	0.021	0.178	0.069
λ _{max} (8) ^{a)}	596.9	483.1	469.5	648.0	648.3	648.0	585.6
2 ∂²(8) ^{b)}	1.436	0.762	1.263	0.02	0.019	0.02	1.25
I _{max} (8) ^{c)}	0.123	0.179	0.323	0.35	0.192	0.05	0.045
R ^{d)}	0.007	0.010	0.008	0.027	0.015	0.014	0.011

Table SI-7. Gaussian analysis of fluorescence spectra of ${f 3g}$ (300-750 nm).

a) Calculated wavelength in nm. b) Line-width in 10^6 cm⁻² (kK²). c) Calculated intensity for the global $I_{max} = 1.00$. d)Residual according to equation (SI-10).

$$R = \sqrt{\int \frac{\left[I(\lambda)_{calcd.} - I(\lambda)_{exp.}\right]^2 d\lambda}{\int \left[I(\lambda)_{exp.}\right]^2 d\lambda}}$$
(SI-10)

Sovent	CHCl₃	Tetradecane	<i>n</i> -Hexane	1-Butanol	DMF	1-Undecanol	toluene
λ _{max} (1) ^{a)}	405.7	384.4	389.3	401.1	380.6	385.5	393.4
2 ∂²(1) ^{b)}	1.435	1.832	1.288	9.886	5.998	4.841	2.677
E _{max} (1) ^{c)}	0.041	0.317	0.087	0.094	0.376	0.43	0.237
λ _{max} (2) ^{a)}	375.7	358.8	367.3	382.9	351.8	349.0	367.3
2 ∂²(2) ^{b)}	6.800	1.785	3.126	4.792	0.923	1.374	2.552
E _{max} (2) ^{c)}	0.405	0.386	0.449	0.3	0.455	0.658	0.314
λ _{max} (3) ^{a)}	356.8	352.3	347.8	350.4	340.4	337.9	352.3
2 ∂²(3) ^{b)}	0.427	0.140	0.751	1.293	0.517	0.521	0.623
E _{max} (3) ^{c)}	0.272	0.11	0.408	0.584	0.357	0.319	0.369
$\lambda_{\max}(4)^{a)}$	344.3	339.2	336.5	339.5	326.4	324.8	340.4
2 <i>o</i> ²(4) ^{b)}	0.630	0.941	0.441	0.360	0.984	0.702	0.574
E _{max} (4) ^{c)}	0.507	0.599	0.404	0.181	0.478	0.468	0.509
$\lambda_{\max}(5)^{a)}$	327.2	322.5	323.1	326.7	306.0	308.8	325.7
2 ∂²(5) ^{b)}	1.374	0.812	1.042	1.578	7.163	5.948	0.844
E _{max} (5) ^{c)}	0.55	0.475	0.504	0.532	0.799	0.693	0.482
$\lambda_{\max}(6)^{a)}$	303.7	307.9	303.1	302.6	265.7	265.7	306.5
2 ∂²(6) ^{b)}	6.872	4.238	6.968	7.918	6.26	6.26	6.375
E _{max} (6) ^{c)}	0.776	0.403	0.798	0.786	0.319	0.319	0.799
λ _{max} (7) ^{a)}	269.6	293.6	267.8	265.7	261.0	261.0	267.8
2 ∂²(7) ^{b)}	4.382	10.649	8.907	6.26	0.716	0.716	8.907
E _{max} (7) ^{c)}	0	0.484	0.246	0.319	0.057	0.057	0.246
$\lambda_{\max}(8)^{a)}$	266.1	260.5	259.6	261.0	243.0	243.0	259.6
2 ∂²(8) ^{b)}	5.889	1.499	0.317	0.716	4.463	4.463	0.317
E _{max} (8) ^{c)}	0.342	0.174	0.058	0.057	0.953	0.953	0.058
R ^{d)}	0.020	0.025	0.017	0.027	0.014	0.029	0.015

Table SI-8. Gaussian analysis of the absorption spectra of **3g** (250-650 nm).

a) Calculated wavelength in nm. b) Line-width in 10^6 cm⁻² (kK²). c) Calculated absorptivities for the global E_{max} = 1.00. d) Residual according to equation (SI-10).

The individual spectra and their Gaussian analyses are reported in the subsequent Fig. SI-10 to SI-23.

Fig. SI-10. UV/Vis absorption spectrum of **3g** in chloroform normalized to 1 in the UVB (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-11. UV/Vis absorption spectrum of **3g** in *n*-tetradecane normalized to 1 in the UVB (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-12. UV/Vis absorption spectrum of **3g** in *n*-hexane normalized to 1 in the UVB (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI.13. UV/Vis absorption spectrum of **3g** in 1-butanol normalized to 1 in the UVB (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-14. UV/Vis absorption spectrum of **3g** in *N*,*N*-dimethylformamide normalized to 1 in the UVB (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-15. UV/Vis absorption spectrum of **3g** in 1-undecanol normalized to 1 in the UVB (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-16. UV/Vis absorption spectrum of **3g** in toluene normalized to 1 in the UVB (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-17. Fluorescence spectrum of **3g** in chloroform normalized to 1 (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-18. Fluorescence spectrum of **3g** in *n*-tetradecane normalized to 1 (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-19. Fluorescence spectrum of **3g** in *n*-hexane normalized to 1 (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-20. Fluorescence spectrum of **3g** in 1-butanol normalized to 1 (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands. Signal at 648 nm caused by light-scattering of the optical excitation.

Fig. SI-21. Fluorescence spectrum of **3g** in *N*,*N*-dimethylformamide normalized to 1 (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands. Signal at 648 nm caused by light-scattering of the optical excitation.

Fig. SI-22. Fluorescence spectrum of **3g** in 1-undecanol normalized to 1 (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

Fig. SI-23. Fluorescence spectrum of **3g** in toluene normalized to 1 (thick, solid curve) and simulated spectrum on the basis of a Gaussian analysis (thin, dashed curve, mainly covered by the experimental spectrum). Bars: Positions and intensities of the individual Gaussian bands.

8. Solvatochromism of 3 according to Dimroth and Reichardt

		1	2	3	4	5	6	7		
Solvent		1-Butanol	C ₁₁ H ₂₂ OH	DMF	Chloroform	Toluene	<i>n</i> -Hexane	Tetradecane	a(3-7)ª	<i>r</i> (3-7) ^b
<i>Е</i> т(30) ^с		49.7	47.6	43.2	39.1	33.9	31.0	31.1		
3a	λ_{\max}^{d}	429.1	420.6	427.2	420.0	410.6	402.7	402.3		
3a	E⊤e	66.63	67.98	66.93	68.07	69.63	71.00	71.07	-0.34	-0.99
3b	λ_{\max}	498.1	476.4	497.2	459.6	443.2	424.0	427.8		
3b	Eτ	57.40	60.01	57.50	62.21	64.51	67.43	66.83	-0.74	-0.99
3c	λ_{\max}	638.4	610.0		578.4	532.4	462.7	469.8		
3c	Eτ	44.79	46.87		49.43	53.70	61.79	60.86	-1.49	-0.96
3d	λ_{\max}	572.1	526.4	618.8	525.1	492.4	440.2	442.3		
3d	Eτ	49.98	54.31	46.20	54.45	58.06	64.95	64.64	-1.43	-0.98
3g	λ_{\max}	576.8	532.4	581.8	509.7	478.0	427.1	431.7		
3g	Eτ	49.57	53.70	49.14	56.09	59.81	66.94	66.23	-1.36	-0.98
3h	λ_{\max}	570.1	537.0	597.8	522.7	487.0	434.8	440.2		
3h	Eτ	50.15	53.24	47.83	54.70	58.71	65.76	64.95	-1.37	-0.99
3i	λ_{\max}	434.2	430.6	432.7	425.4	416.7	406.7	407.0		
3i	Eτ	65.85	66.40	66.08	67.21	68.61	70.30	70.25	-0.34	-0.99
Зј	λ_{\max}	480.0	457.5	478.3	447.4	427.5	407.4	410.8		
Зј	Eτ	59.56	62.49	59.78	63.90	66.88	70.18	69.60	-0.80	-0.99
31	λ_{\max}	556.6	518.2	583.4	492.2	454.6	426.8	436.7		
31	Eτ	51.37	55.17	49.01	58.09	62.89	66.99	65.47	-1.33	-0.98

Table SI-9. Solvatochromism of the fluorescence of 3.

^a Slope of the linear correlation between the E_T values and the E_T (30) values for the solvents Nr. 3-7; ^b Correlation number of the linear correlation between the E_T values and the E_T (30) values for the solvents Nr. 3-7; ^c E_T values of the pentaphenylpyridiniumphenolate Nr. 30; ^d fluorescence maxima in nm; ^e molar energy of fluorescence emission in kcal/mol.

Fig. SI-24. Weak solvatochromism of the absorption of naphthalimides as indicated by plots with the $E_T(30)$ values in kcal/mol. $E_T = 28591/\lambda_{max}$ (absorption in kcal). From left to right: Solvents *n*-hexane, *n*-tetradecane, toluene, chloroform, dimethylformamide, 1-undecanol and 1-butanol. Filled circles **3g**, filled squares **3b**, filled triangles **3d**, filled diamonds **3h**, stars **3l**, open diamonds **3i**, crosses **3j**, open circles **3c**, open triangles **3a**.

Fig. SI-25. Absorption and fluorescence spectra of **3a**. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-26. Absolute absorption spectra of **3a**. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-27. Absolute absorption spectra of **3b**. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-28. Absolute absorption spectra of **3c**. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-29. Absolute absorption spectra of **3d**. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-30. Absolute absorption spectra of 3g. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-31. Absolute absorption spectra of **3h**. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-32. Absolute absorption spectra of **3i**. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-33. Absolute absorption spectra of **3j**. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-34. Absolute absorption spectra of **3I**. Molar extinction is given in L mol⁻¹ cm⁻¹. Applied solvents: *n*-hexane (red), *n*-tetradecane (blue), toluene (grey), chloroform (black), 1-undecanol (turquoise) DMF (yellow), 1-butanol (green).

Fig. SI-35. Comparison of absorption (left) and fluorescence (right) spectra of **3g** (black) and **3h** (red) in CHCl₃.

Fig. SI-36. Temperature dependent fluorescence spectra of **3f** in diethylene glycol diethyl ether. Room temperature (blue), approx. 100 °C (yellow), reflux, approx. 200 °C (red).

Table SI-10. Calculated energies of HOMO and LUMO and comparison to experimental data of **3**.

Dye	Е номо ^а	E lumo ^a	<i>Е</i> номо(Е ₁) ^b	<i>Е</i> гомо(Е1) _р	E abs ^c	λ_{abs} (calc.) ^d	λ_{abs} (meas.) e
3 a	-6.667	-2.884	-8.027	0.082	3.782383	327.8	355.4
3b	-6.395	-2.803	-7.771	0.166	3.591903	345.2	364.8
3c	-5.606	-2.667	-7.211	0.354	2.93883	421.9	426.2
3d	-6.340	-2.857	-7.837	0.082	3.483057	356.0	362.2
3g	-6.095	-2.830	-7.510	0.245	3.265366	379.7	325.0
3f	-6.177	-2.857	-7.592	0.082	3.319789	373.5	364.4
3h	-5.987	-2.830	-7.347	0.272	3.156521	392.8	329.0
3i	-6.640	-2.857	-7.946	0.082	3.782383	327.8	356.0
3j	-6.993	-3.184	-8.354	-0.327	3.809594	325.5	366.4
31	-6.531	-2.857	-8.296	0.199	3.673537	337.5	344.8

Applied solvents: *n*-tetradecane, *n*-hexane, toluene, chloroform, dimethylformamide (DMF); a) Calculated energy of HOMO and LUMO in eV in the electronic ground state, respectively (B3LYP 6-331**G); b) Calculated energy of HOMO and LUMO in eV in the electronically excited state, respectively (CIS B3LYP 6-331**G); c) Calculated energetic HOMO-LUMO difference in eV (DFT B3LYP 6-311**G); d) Calculated energetic HOMO-LUMO difference in nm; e) Experimentally determined absorption maxima in chloroform.

48

Optimized structures and electron density of HOMO and LUMO (DFT B3LYP 6-311**G and CIS 6-311**G basis set). a) Optimized structure in electronic groundstate; b) Optimized structure in electronically excited state; c) HOMO in groundstate; d) LUMO in ground state; e) HOMO in excited state; f) LUMO in excited state.

11. References

- SI-1 A. K. Banerjee, P. S. Poon, M. S. Laya, J. A. Azocar, *Russ. J. Gen. Chem.*, 2003, **73**, 1815.
- SI-2
 a) Y. Cai, Z. Guo, J. Chen, W. Li, L. Zhong, Y. Gao, L. Jiang, L. Chi, H. Tian, W.-H. Zhu, J. Am. Chem. Soc., 2016, 138, 2219; b) T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem., 1995, 60, 7508.
- SI-3
 H. Langhals, A. Hofer, Ger. Offen. (2014), DE 102012023247 A1 20140626, Chem.
 Abstr., 2014, 161, 159273; PCT Int. Appl. (2014), WO 2014083011 A2 20140605,
 Chem. Abstr., 2014, 161, 43086.
- SI-4 A. Kawski, P. Bojarski, B. Kukliński, Chem. Phys. Lett., 2008, 463, 410.
- SI-5 J.-L. M. Abboud, R. W. Taft, M. J. Kamlet, J. Chem. Soc. Perkin Trans. II, 1985, 815.
- SI-6 J. Catalán, J. Phys. Chem. B, 2009, **113**, 5951.
- ^{SI-7} H. Langhals, Anal. Bioanal. Chem., 2002, **374**, 573.