SUPPORTING INFORMATION

LiRb₂PO₄: A New Deep-Ultraviolet Nonlinear Optical Phosphate

with a Large SHG Response

Lin Li^a, Ying Wang^a, Bing-Hua Lei^{a,b}, Shujuan Han^{a,*}, Zhihua Yang^a, Hongyi Li^a, Shilie Pan^{a,*}

a.Xinjiang Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China. E-mail: slpan@ms.xjb.ac.cn; Tel: +86-991-3674558.

b. University of Chinese Academy of Sciences, Beijing 100049, China

CONTENTS

1.	Crystal Data	3
2.	PXRD Pattern	5
3.	Crystal Structure	6
4.	IR spectrum	7
5.	Electronic Structure Calculations	8
6.	Dipole Moments Calculation	10

1. Crystal Data

Table S1. Atomic coordinates (×10⁴) and equivalent isotropic displacementparameters (Å² × 10³) for LiRb₂PO₄. U_(eq) is defined as one third of the trace of the
orthogonalized U_{ij} tensor.

Atom x y z	U _(eq) BVS
Li1 5000 2056(14) 274(18) 12(3) 1.0785
Rb1 0 1061(1) -2074	(1) 15(1) 0.9727
Rb2 0 4359(1) -577	(1) 16(1) 1.0748
P1 0 1931(2) 2391	(2) 8(1) 4.9240
O1 0 1344(5) 4197	(8) 12(1) 2.1146
O2 0 3281(5) 2711	(7) 14(1) 2.1044
<u>O3</u> 2232(8) 1567(4) 1394	(6) 18(1) 2.0606

LiRb ₂ PO ₄					
Li1-O3	1.866(10)	Rb2-O2	2.825(6)		
Li1-O3*1	1.866(10)	Rb2-O1*8	2.928(4)		
Li1-O1*2	1.999(17)	Rb2-O1*2	2.928(4)		
Li1-O2*2	2.021(16)	Rb2-O2*12	2.988(6)		
		Rb2-O3*10	3.005(5)		
Rb1-O1*6	2.902(6)	Rb2-O3*2	3.005(5)		
Rb1-O1*7	2.906(7)	Rb2-O3*14	3.322(5)		
Rb1-O2*2	2.914(4)	Rb2-O3*13	3.322(5)		
Rb1-O2*8	2.914(4)				
Rb1-O3	3.020(6)	P1-O3*9	1.530(5)		
Rb1-O3*9	3.020(6)	P1-O3	1.530(5)		
Rb1-O3*2	3.328(5)	P1-O1	1.548(6)		
Rb1-O3*10	3.328(5)	P1-O2	1.553(6)		
Rb1-O3*6	3.447(6)				
Rb1-O3*11	3.447(6)	O2-Rb2-O1*8	86.33(12)		
		O2-Rb2-O1*2	86.33(12)		
O3*1-Li1-O1*2	117.7(5)	O1*8-Rb2-O1*2	147.6(2)		
O3-Li1-O2*2	113.6(5)	O2-Rb2-O2*12	142.00(15)		
O3*1-Li1-O2*2	113.6(5)	O1*8-Rb2-O2*12	102.57(11)		
O1*6-Rb1-O1*7	116.17(14)	O1*2-Rb2-O2*12	102.57(11)		
O1*6-Rb1-O2*2	105.09(10)	O2-Rb2-O3*10	123.50(14)		
O1*7-Rb1-O2*2	85.13(11)	O1*8-Rb2-O3*10	50.24(15)		
O1*6-Rb1-O2*8	105.09(10)	O1*2-Rb2-O3*10	110.81(14)		
O1*7-Rb1-O2*8	85.13(11)	O2*12-Rb2-O3*10	88.13(14)		
O2*2-Rb1-O2*8	149.6(2)	O2-Rb2-O1*8	86.33(12)		
O1*6-Rb1-O3	82.96(15)	O2-Rb2-O1*2	86.33(12)		
O1*7-Rb1-O3	149.65(11)	O1*8-Rb2-O1*2	147.6(2)		
O2*2-Rb1-O3	66.48(14)	O2-Rb2-O2*12	142.00(15)		
O2*8-Rb1-O3	113.77(14)	O1*8-Rb2-O2*12	102.57(11)		
		O1*8-Rb2-O3*2	110.81(14)		
O3 *9-P1-O3	110.2(4)	O1*2-Rb2-O3*2	50.24(15)		
O3*9-P1-O1	109.8(2)	O2*12-Rb2-O3*2	88.13(14)		
O3-P1-O1	109.8(2)	O3*10-Rb2-O3*2	62.40(19)		
O3 *9-P1-O2	110.3(2)	O1 *8-Rb2-O3 *2	110.81(14)		
O3-P1-O2	110.3(2)	O1*2-Rb2-O3*2	50.24(15)		

Table S2. Selected Bond Distances(Å)and Angles (deg) for LiRb₂PO₄.

Symmetry transformations used to generate equivalent atoms:

*1) -x+2, -y+1, z-1/2; *2) x, y, z-1; *3) -x+5/2, -y+3/2, z-1/2; *4) -x+3/2, -y+3/2, z-1/2;

*5) -x+2, y, z; *6) x+1/2,-y+3/2, z-1/2; *7) x, -y+1, z-1/2; *8) -x+2, -y+2, z-1/2;

*9) x+1/2, y+1/2, z; *10) -x+3/2, y+1/2, z; *11) -x+1, y, z.

*1) -x+1, y, z; *2) -x+3/2, -y+3/2, z-1/2; *3) -x+5/2, -y+3/2, z-1/2;

*4) x+1/2, -y+3/2, z-1/2; *5) -x+2, -y+1, z-1/2; *6) -x+2, y, z; *7) -x+2, -y+2, z-1/2; *8) x, y, z-1.

2. PXRD Pattern

Figure S1. Experimental and calculated XRD patterns for LiRb₂PO₄.

3. Crystal Structure

Figure S2. The coordination environments of the Rb1 atoms (a and b); the Rb2 atoms (c and d).

4. IR spectrum

Figure S3. IR spectrum of LRPO.

5. Electronic Structure Calculations

Figure S5. Partial density of states in LRPO.

Figure S6. The orientation of the O-2*p* orbital based on orbital analysis

6. Dipole Moments Calculation

Table S3.	Calculation	of the dipole m	noments for the	e PO ₄ and LiO ₄	$_4$ and RbO _n (n = 8,
10) polyh	edra in LRPC).			

	Dipole Moment (Debye)			
	x/a	y/b	z/c	i otal (Debye)
PO ₄	0	-0.25	0.88	0.92
	0	-0.25	0.88	0.92
	0	-0.25	0.88	0.92
	0	0.25	0.88	0.92
	0	0.25	0.88	0.92
	0	0.25	0.88	0.92
SUM	0	0.00	5.31	5.31
Net Dipole Moments*		3.	.54	
	Dipol	le Moment (Debye)	Tatal (Dahara)
	x/a	y/b	z/c	Total (Debye)
LiO ₄	0	-1.24	-4.37	4.54
	0	-1.24	-4.37	4.54
	0	-1.23	-4.37	4.54
	0	1.23	-4.37	4.54
	0	1.23	-4.37	4.54
	0	1.23	-4.37	4.54
SUM	0	0.00	-26.25	26.25
Net Dipole Moments*		1′		
	Dipole Moment (Debye)		$T_{1}(\mathbf{n}^{1})$	
	x/a	y/b	z/c	Total (Debye)
Rb1O ₁₀	0	0.17	-1.14	1.15
	0	0.12	-0.93	0.93
	0	0.12	-0.93	0.93
	0	0.12	-0.93	0.93
	0	-0.12	-0.93	0.93
	0	-0.17	-1.13	0.93
SUM	0	0.25	-5.97	5.97
Net Dipole Moments		3.9	98	
	Dipole Moment (Debye)			
	x/a	y/b	z/c	Total (Debye)
Rb2O ₈	0	-1.92	-1.26	2.3
	0	3.34	-5.14	6.13
	0	1.92	-1.26	2.3
	0	-1.92	-1.26	2.3
	0	-1.92	-1.26	23

	0	1.92	-1.26	2.3
SUM	0	0.00	-11.45	11.54
Net Dipole Moments	et Dipole Moments		7.69	

*There are four PO₄ in the crystal cell.

Table S4. Calculation of the dipole moments for the PO₄ polyhedra in LCPO.

Dipole Moment (Debye)			Tatal (Dahua)	
	x/a	<i>x/a y/b z/c</i>		Total (Debye)
PO_4	0	-0.44	0.95	1.05
	0	-0.44	0.95	1.05
	0	-0.44	0.95	1.05
	0	0.44	0.95	1.05
	0	0.44	0.95	1.05
	0	0.44	0.95	1.05
SUM	0	0.00	5.70	5.70
Net Dipole Moments		3	.8	

*There are four PO_4 in the crystal cell.

	Dipole	Total (Dabya)		
	x/a	<i>x/a y/b z/c</i>		Total (Debye)
PO ₄	4.23	4.02	2.43	6.32
	4.23	-4.02	2.43	6.32
	-0.29	4.25	0.04	4.26
	-0.29	-4.25	0.04	4.26
	-5.63	2.72	-3.17	7.01
	-5.63	2.72	-3.17	7.01
	2.11	0.88	-2.18	3.96
	2.11	-0.88	-2.18	3.96
	-2.65	-1.99	-2.50	4.15
	-2.65	1.99	-2.50	4.15
SUM	-4.45	5.44	-10.78	12.87
Net Dipole Moments*		12	.87	

Table S5. Calculation of the dipole moments for the PO₄ polyhedra in RbBa₂(PO₃)₅.

*There are ten PO_4 in the crystal cell.