Supporting Information

Ultra-High Seebeck Coefficient and Low Thermal Conductivity of

Centimeter-sized Perovskite Single Crystal Acquired by a Modified

Fast Growth Method

Tao Ye,^{a,b†} Xizu Wang,^{a†} Xianqiang Li,^c Alex Qingyu Yan,^c Seeram Ramakrishna,^{b*} Jianwei Xu^{a*}

^{a:} Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), #08-03, 2 Fusionopolis Way, Innovis, 138634, Singapore. Email: jw-xu@imre.a-star.edu.sg

^{b:} Department of Mechanical Engineering and Centre of Nanofibers and Nanotechnology (NUSCNN), National University of Singapore, Singapore 117576, Singapore. Email: seeram@nus.edu.sg

^{c:} School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

†Equal contribution

Corresponding Author:

Email: jw-xu@imre.a-star.edu.sg (J. W. X.) Email: seeram@nus.edu.sg (S. R.)

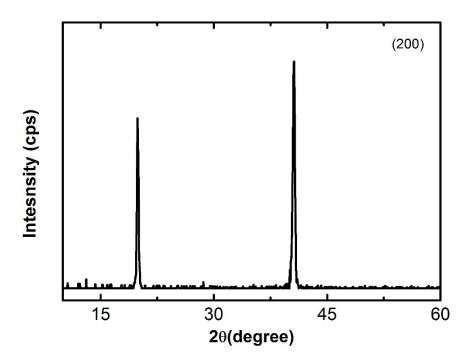


Figure S1. 20 scan profile for the large perovskite CH₃NH₃PbI₃ crystal for the (200)

plane.

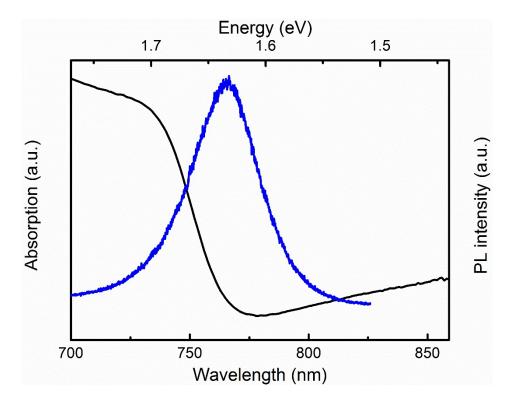


Figure S2. Optical absorption (black) and PL (blue) of a MAPbI₃ thin film sample.

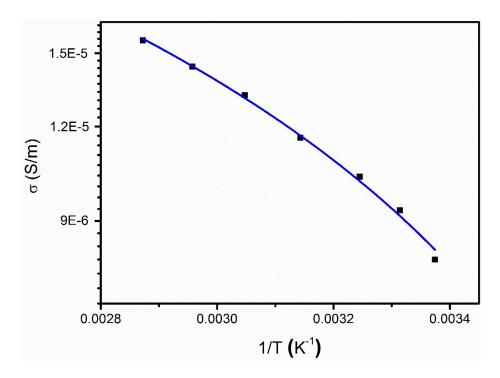


Figure S3. Arrhenius plot of the electrical conductivity of the perovskite single crystal. The thermally activated relation can be defined as: $\delta \sim \exp(E_a/T)$, E_a is the energy barrier.