Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

Used procedure for Rietveld refinement with X'Pert HighScore Plus is given in table S1. The fitted parameter in every refinement cycle are marked with an x.

	1	2	3	4	5	6	7	8	9	10	11	12
Zero shift	х	х	х	х	х	х	х	х	х	х	х	х
Flat background	х	х	х	х	х	х	х	х	х	х	х	х
Coefficient 1	х	х	х	х	х	х	х	х	х	х	х	х
Coefficient 3	х	х	х	х	х	х	х	х	х	х	х	х
Coefficient 3	х	х	х	х	х	х	х	х	х	х	х	х
Scale factor	х	х	х	х	х	х	х	х	х	х	х	х
Lattice parameter a		х	х	х	х	х	х	х	х	х	х	х
Lattice parameter c		х	х	x	х	х	х	х	х	х	х	х
Preferred orientation (001)			х	х	х	х	х	х	х	х	х	х
Anisotropic Broadening (001)			х	x	х	х	х	х	х	х	х	х
W				x	х						х	х
Atomic coordinates z(O)					х	х	х	х	х	х	х	х
V						х	х	х	х			х
B isotropic O							х		х	х	х	х
B isotropic Co								х	х	х	х	х
U										х		

Table S1: Used procedure for Rietveld refinement with X'Pert high score plus of as prepared samples.

DiFFAX simulation shows shifting and broadening of the (012), (015) and (107) reflection for C19-type (Figure S1 a) and 2H-type (Figure S1 b) faults in the resulting XRPD pattern.

2 8/° b) Shifts among (AcB)(BaC)(CbA) and (AcB)(BcA) patterns

6

5

Figure S1: Simulated XRPD-patterns of CoOOH containing variable probabilities (table 6) for transitions between (AcB)(BaC)(CbA)- and a) (CbA)(BaC)(AcB)- and b) (AcB)(BcA)-stacking pattern.

Figure S 2 and S 3 display the best Rietveld fit for a 4 c and 6 c supercell. Applying a comparatively small supercell (4 *c*, 12 layers) leads to a good fit of the powder pattern and to acceptable agreement factors (table 4). A enlargement in *c*-direction of (6 *c*, 18 layers) yields improvements in the fit of the powder pattern and in the final agreement factors.

Figure S2: Scattered X-ray intensities CoO(OH), sample CoOOH-O₂ at ambient conditions as a function of diffraction angle 20. The observed pattern (circles) measured in Debye-Scherrer geometry, the best Rietveld fit profiles (line) using the method for microstructure refinement³ with a 4 c supercell and the difference curve between the observed and the calculated profiles (below) are shown. The high angle part starting at 17.0 20 is enlarged for clarity.

Figure S3: Scattered X-ray intensities CoO(OH), sample $CoOOH-O_2$ at ambient conditions as a function of diffraction angle 20. The observed pattern (circles) measured in Debye-Scherrer geometry, the best Rietveld fit profiles (line) using the method for microstructure refinement³ with a 6 c supercell and the difference curve between the observed and the calculated profiles (below) are shown. The high angle part starting at 17.0 20 is enlarged for clarity.