In-plane Isotropic Charge Transport Characteristics of Single-Crystal FETs with High Mobility Based on 2,6bis(4-methoxyphenyl)anthracene: Experimental Cum Theoretical Assessment

Aiyuan Li,^{a, †} Lijia Yan,^{b, †} Chao He,^a Yanan Zhu,^a Dongwei Zhang,^a Imran Murtaza,^b Hong Meng,^{a,b}* and Osamu Goto^a*[†]

- a. School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- b. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China
- [†] These authors contribute equally in this work.

Organic	Single-crystal	Mobility (cm ² /Vs)	Ratio of	Dielectric layer
Semiconductor	growth method		μ_{max}/μ_{min}	
DNTT ¹	Physical vapour	9.4	1.3~1.7	air
	transport			
DPVAnt ²	Physical vapour	4.3	1.5~1.95	SiO ₂
	transport			
DPA ³	Physical vapour	34	1.46	SiO ₂
	transport			
ditBu-BTBT ⁴	Physical vapour	17	1.14 ^b	SiO ₂
	transport			
DBTTT⁵	Physical vapour	13.87 ± 2.34^{a}		SiO ₂
	transport			

^a extracted from thin-film TFT;

^b obtained from calculation.

Supporting Information Table S1. Isotropic charge transport (Weak anisotropic charge transport) in single-crystal FETs.

Supporting Information Figure S1. Diagram of the three-zone, physical vapour transport, single-crystal growth instrument used in this work.

Supporting Information Figure S2. Single-crystal FET with gold wires used as the shadow mask. a) A polarized optical micrograph of a device and b) transfer characteristic curves of devices 1# and 2#. The transfer curves were measured under $V_d = -80$ V.

Device	Mobility	V _{th}	On/off
	(cm ² /Vs)	(V)	ratio
1	4.84	-	1.42×10 ⁷
		53	
2	6.03	-	7.11×10 ⁶
		53	

Supporting Information Table S2. Performance of devices #1 and #2 $(\mu_2/\mu_1=1.24)$.

Supporting Information Figure S3. Polarized microscope picture of the device and the W and L measurement using the POM's software. W is determined as $W = (W_1+W_2)/2$.

Supporting Information Figure S4. I-V curves without Vg (Vg=0).

Supporting Information Figure S5. Large single-crystal FETs with another type of shadow mask.

Device	Mobility (cm ² /Vs)	Vth (V)	On/off ratio
2	2.05	-60	2.7×10 ⁵
3	1.99	-55	2.96×10 ⁶
4	2.90	-60	1.38×10 ⁶
5	2.50	-62	1.34×10^{6}
8	2.13	-58	3.8×10 ⁵

Supporting Information Table S3 Performance of devices with another kind of shadow mask; according to the cosines law, the L/W of each device was determined to be 0.27.

	Transfer integral (eV)	Reorganizatio n energy (eV)	Distance (cm)	Hole mobility (cm ² /Vs)
Р	0.013	0.2491	6.16E-08	6.59E-04
T ₁	0.073	0.2491	4.83E-08	3.54E-01
T ₂	0.073	0.2491	4.83E-08	3.54E-01

Supporting Information Table S4 Mobilities for the integrals P, T₁ and T₂, calculated according to the Marcus–Levich–Jortner simulations.

Supporting Information Figure S6. Typical parallelogram shape of a single crystal

grown in zone 3.

REFERENCES

1. Xie, W. et al. Temperature-independent transport in high-mobility dinaphthothieno-thiophene (DNTT) single crystal transistors. Adv. Mater. 25, 3478-3484 (2013).

2. Li, H. et al. High-performance transistors and complementary inverters based on solution-grown aligned organic single-crystals. Adv. Mater. 24, 2588-2591 (2012).

Liu, J. et al. Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA).
Chem. Commun. (Camb.) 51, 11777-11779 (2015).

4. Schweicher, G. et al. Bulky end-capped [1]benzothieno[3,2-b]benzothiophenes: reaching high-mobility organic semiconductors by fine tuning of the crystalline solid-state order. Adv. Mater. 27, 3066-3072 (2015).

 Park, J. I. et al. Dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (DBTTT): high-performance small-molecule organic semiconductor for field-effect transistors. J. Am. Chem. Soc. 137, 12175–12178 (2015).