Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Facile route to a high-quality graphene/MoS₂ vertical fieldeffect transistor with gate-modulated photocurrent response

M. Farooq Khan¹, M. Arslan Shehzad², M. Zahir Iqbal³, M. Waqas Iqbal⁴, Ghazanfar Nazir¹, Yongho Seo² and Jonghwa Eom¹*

¹ Department of Physics & Astronomy and Graphene Research Institute, Sejong University, Seoul 05006, Korea

 2 Faculty of Nanotechnology & Advanced Materials Engineering and Graphene Research Institute, Sejong

University, Seoul 05006, Korea

³ Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber

Pakhtunkhwa, Pakistan

⁴ Department of Physics, Riphah International University, Lahore, Pakistan

*E mail: eom@sejong.ac.kr

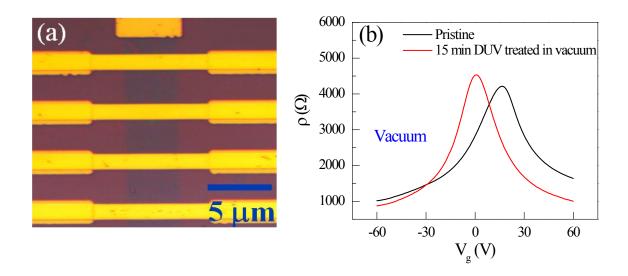


Figure S1. Device fabrication and electrical transport measurement of planar graphene FET device. (a) Optical image of graphene FET device. (b) Transfer characteristics (resistivity as function of V_g) of pristine and DUV treated graphene FETs.

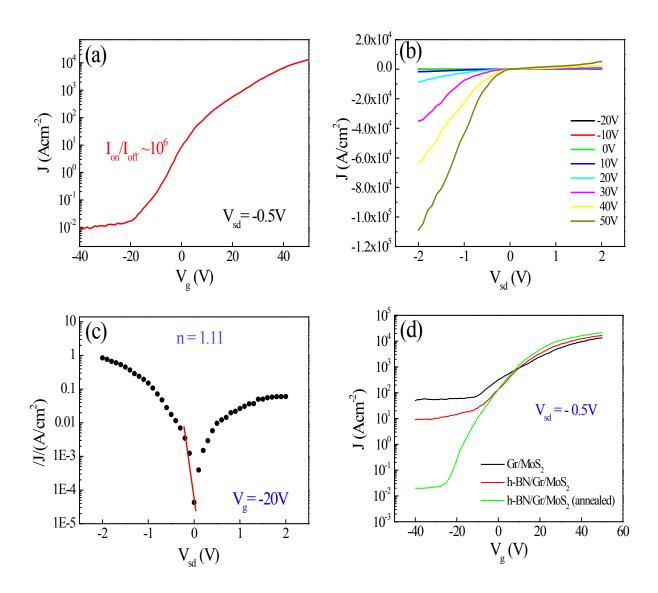
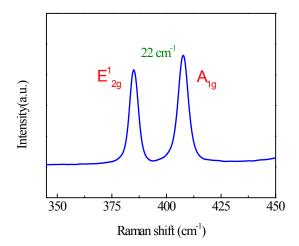



Figure S2. Electrical transport measurement of vertical MoS₂ FET device. (a) $J-V_g$ transfer characteristics of h-BN/Gr/MoS₂/Mo FET. (b) Current density versus V_{sd} of vertical FET device. (c) J-V curve at $V_g = -20$ V for vertical FET. The ideality factor was identified by linear regression (red line). (d) Transfer characteristics of Gr/MoS₂ devices. The ON-OFF ratio was enhanced with h-BN substrate, and then further enhanced after the annealing in a high vacuum (~10-6 torr) at 200 °C.

.

Figure S3. Raman spectrum of FL MoS₂ flake in the planar MoS₂ FET device. The gap between two peaks is ~22 cm⁻¹, which suggests that the flake is not more than 4 or 5 layers.