Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Metal-Organic Frameworks Based on Bipyridinium Carboxylate: Photochromism and Selective Vapochromism

Chenghui Zhang, Libo Sun, Yan Yan, Yuchuan Liu,

Zhiqiang Liang*, Yunling Liu and Jiyang Li*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of

Chemistry, Jilin University, Changchun 130012, P. R. China

compounds	1	2
formula	$C_{42}H_{36}N_8O_{16}Cd_2$	$C_{72}H_{58}Br_4Cd_4N_8O_{23}$
fw	1133.59	2158.39
temp (K)	293(2)	293(2)
wavelength (Å)	0.71073	0.71073
Crystal system	Orthorhombic	Monoclinic
space group	$Pna2_1$	$P2_{1}/c$
<i>a</i> (Å)	19.575(4)	15.3906(10)
<i>b</i> (Å)	15.170(3)	7.7582(5)
<i>c</i> (Å)	14.240(3)	17.3185(12)
V (Å ³)	4228.6(15)	1951.3(2)
Ζ	4	1
<i>F</i> (000)	2272	1048
θ range (deg)	3.22 - 27.48	2.42-26.14
reflections collected/unique	37091/9601	11810/3901
R _{int}	0.1043	0.0422
data / restraints /params	9601/1/548	3901/12/269
GOF on F^2	1.017	1.018
$R_{1,} w R_2 a[I > 2\sigma(I)]$	0.0644, 0.1425	0.0377, 0.0908
$R_{1,} w R_2$ (all data)	0.1098, 0.1588	0.0578, 0.0991

 Table S1 Crystal Data and Structure Refinements for 1 and 2.

 $\overline{{}^{a}R_{1}=\sum ||F_{o}|-|F_{c}||/\sum |F_{o}|}$. $wR_{2} = [\sum [w (F_{o}^{2}-F_{c}^{2})^{2}] / \sum [w (F_{o}^{2})^{2}]]^{1/2}$

Cd(1)-O(7)	2.246(5)	Cd(2)-O(3)	2.273(6)
Cd(1)-N(1)	2.327(6)	Cd(2)-O(1)	2.278(6)
Cd(1)-O(5)	2.343(8)	Cd(2)-N(7)	2.377(8)
Cd(1)-O(9)	2.400(10)	Cd(2)-O(4)	2.454(9)
Cd(1)-O(8)	2.460(7)	Cd(2)-O(10)	2.476(14)
Cd(1)-O(4)	2.572(8)	Cd(2)-O(2)	2.602(6)
Cd(1)-O(6)	2.635(6)	Cd(2)-O(11)	2.636(12)
O(7)-Cd(1)-N(1)	129.8(2)	O(4)-Cd(2)-O(11)	150.1(4)
O(7)-Cd(1)-O(5)	143.0(3)	O(10)-Cd(2)-O(11)	48.4(4)
N(1)-Cd(1)-O(5)	83.2(3)	O(2)-Cd(2)-O(11)	119.1(4)
O(7)-Cd(1)-O(9)	85.7(3)	O(3)-Cd(2)-O(2)	98.1(2)
N(1)-Cd(1)-O(9)	81.6(3)	O(1)-Cd(2)-O(2)	52.8(2)
O(5)-Cd(1)-O(9)	83.2(4)	N(7)-Cd(2)-O(2)	133.1(2)
O(7)-Cd(1)-O(8)	80.4(3)	O(4)-Cd(2)-O(2)	85.5(3)
N(1)-Cd(1)-O(8)	99.4(3)	O(10)-Cd(2)-O(2)	71.2(3)
O(5)-Cd(1)-O(8)	114.1(4)	O(3)-Cd(2)-O(11)	79.7(4)
O(9)-Cd(1)-O(8)	162.7(3)	O(1)-Cd(2)-O(11)	114.9(4)
O(7)-Cd(1)-O(4)	105.4(3)	N(7)-Cd(2)-O(11)	78.8(3)
N(1)-Cd(1)-O(4)	123.5(3)	O(3)-Cd(2)-O(10)	78.8(3)
O(5)-Cd(1)-O(4)	51.7(3)	O(1)-Cd(2)-O(10)	92.2(3)
O(9)-Cd(1)-O(4)	118.2(3)	N(7)-Cd(2)-O(10)	117.1(4)
O(8)-Cd(1)-O(4)	75.8(2)	O(4)-Cd(2)-O(10)	145.7(4)
O(7)-Cd(1)-O(6)	52.3(2)	O(3)-Cd(2)-O(1)	150.7(2)
N(1)-Cd(1)-O(6)	77.6(2)	O(3)-Cd(2)-N(7)	128.6(2)
O(5)-Cd(1)-O(6)	155.8(3)	O(1)-Cd(2)-N(7)	80.3(2)
O(9)-Cd(1)-O(6)	79.6(3)	O(3)-Cd(2)-O(4)	80.1(3)
O(8)-Cd(1)-O(6)	83.8(3)	O(1)-Cd(2)-O(4)	93.2(3)
O(4)-Cd(1)-O(6)	152.5(3)	N(7)-Cd(2)-O(4)	97.1(3)

Table S2 Selected bond lengths [Å] and angles $[\circ]$ for 1.

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2, -y+1/2, z #2 x-1/2, -y+1/2, z

#3 x-1/2, -y-1/2, z	#4 x+1/2, -y-1/2, z
#5 x, y-1, z	#6 x, y+1, z

Table S3 Selected bond lengths [Å] and angles $[\circ]$ for 2.

Cd(1)-N(1)	2.3250(13)	Cd(1)-O(3)	2.3748(13)
Cd(1)-O(4)	2.3663(14)	Cd(1)-O(1)	2.4077(14)
Cd(1)-O(2)	2.3686(14)	Cd(1)-Br(1)	2.5768(3)
N(1)-Cd(1)-O(4)	85.51(5)	O(3)-Cd(1)-O(1)	135.49(4)
N(1)-Cd(1)-O(2)	136.00(5)	N(1)-Cd(1)-Br(1)	98.41(4)
O(4)-Cd(1)-O(2)	93.11(5)	O(4)-Cd(1)-Br(1)	144.46(4)
N(1)-Cd(1)-O(3)	129.78(4)	O(2)-Cd(1)-Br(1)	107.22(4)
O(4)-Cd(1)-O(3)	55.18(4)	O(3)-Cd(1)-Br(1)	98.57(3)
O(2)-Cd(1)-O(3)	81.43(5)	O(1)-Cd(1)-Br(1)	95.51(3)
N(1)-Cd(1)-O(1)	88.99(5)	O(2)-Cd(1)-O(1)	54.06(5)
O(4)-Cd(1)-O(1)	119.94(5)	N(1)-Cd(1)-C(17)	114.31(6)

Symmetry transformations used to generate equivalent atoms:

#1 x-1, y, z #2 x-1, -y+1/2, z-1/2

#3 x+1, -y+1/2, z+1/2 #4 x+1, y, z

Table S4 Summary of diverse coordination modes of ipbq ligands in the synthesized MOFs, A: central pyridine; B: isophthalic moieties; C: edge pyridine (colour modes: Cu, orange; Zn, cyan; Cd, green; oxygen, red; N, blue; carbon, gray).

Compound	Coordination modes	Dihedral angles between			Framework	Noto
compound	of the ipbp ligand	A-B	A-C	B-C	Flamework	Note
Cu-MOF		44.46°	11.49°	32.98°	3D	Ref 35
Zn-MOF1	Yoor	44.96°	13.11°	31.96°	3D	Pof 20
Zn-MOF2	30000	38.37°	23.19°	4.45°	2D	Kel SU
Cd-MOF1	47.71°	26.48°	24.02°	20		
		43.47°	32.16°	11.79°	20	This work
Cd-MOF2		49.02°	39.87°	11.73°	2D	

Fig. S1 IR spectra of H_2ipbp ligand, 1 and 2. Besides the C=O stretch vibrations of the carboxylic groups around 1612 cm⁻¹ and 1380 cm⁻¹, the characteristic absorption around 1638 cm⁻¹ of these two compounds confirms the existence of the C=N and C=C stretching vibrations of the pyridinium group.

Fig. S2 The asymmetric units of 1 (a) and 2 (b) showing ellipsoid at the 30% probability level. The hydrogen atoms and guest DMF molecules for 1 and guest H_2O molecules for 2 are omitted for clarity.

Fig. S3 Powder XRD patterns of experimental, simulated, irradiated and heated samples of compound 1 (a) and compound 2 (b).

Fig. S4 (a) EPR signals of paled sample of 1; (b) EPR signals of paled sample of 2.

Fig. S5 TG curves of compounds 1 and 1H. For compound 1, the TGA curve shows two weight losses. The first weight loss of 12.55% from 25 to 173 °C is due to the removal of the guest DMF molecules (calcd 12.89%). Then, there is a platform between 173 and 310 °C, after which, the sample starts to decompose at 310 °C and ends at 570 °C with a weight loss of 63.07%. The total weight loss of 1 from room temperature to 570 °C is 75.98% (calcd 77.34%). For 1H, no weight loss is observed before 310°C, suggesting the complete remove of guest DMF molecules after heated upon 170 °C of compound 1.

Fig. S6 UV-vis spectra and EPR signals of original and UV irradiated samples for compound 1H.

Fig. S7 Solid-state fluorescent emission spectra of these two compounds before and after UV-irradiation: (a) compound 1 ($\lambda_{ex} = 388 \text{ nm}$, $\lambda_{em} = 529 \text{ nm}$); (b) compound 2 ($\lambda_{ex} = 453 \text{ nm}$, $\lambda_{em} = 535 \text{ nm}$).

Fig. S8 Solid-state fluorescent emission spectral changes of H₂ipbp under photoirradiation ($\lambda_{ex} = 370$ nm, $\lambda_{em} = 503$ nm).

Dista	nces	Angles	5
$\begin{array}{c} 01 \cdots N7 \\ 08 \cdots N7 \\ 05 \cdots N7 \\ 04 \cdots N7 \\ 06 \cdots N1 \\ 05 \cdots N1 \\ 08 \cdots N1 \end{array}$	3.004 3.114 3.741 3.622 3.118 3.100 3.653	01…N7…C31 08…N7…C31 01…N7…C31 04…N7…C31 06…N1…C22 05…N1…C22 08…N1…C22	130.245 125.299 105.422 139.242 125.121 128.880 143.986

Fig. S9 The orientations and distances of carboxylate oxygen atoms and pyridinium nitrogen atoms between adjacent ribbons of rings in compound 1.

Distances		Angles		
O3…N2	3.106	O3…N2…C6	76.908	
01…N1	3.317	O1…N1…C3	128.765	
O4…N1	3.185	$O4 \cdots N1 \cdots C3$	133.976	
$Br1 \cdots N1$	3.715	$Br1 \cdots N1 \cdots C3$	137.420	

Fig. S10 The orientations and distances of carboxylate oxygen atoms and pyridinium nitrogen atoms between adjacent ribbons of rings in compound 2.

Fig. S11 Powder XRD patterns of 1, 1D and 1D after washed by MeOH.

Fig. S12 The UV-vis spectrum of 1D.

Fig. S13 The UV-vis spectrum of 1D after washed by MeOH.

Fig. S14 ¹H NMR spectrum recorded for the CD₃OD extracts of 1D.

Fig. S15 The selectivity vapochromic properties of **1** for DEA (T-n-PA: tripropylamine; TEA: triethylamine; D-n-PA: di-n-propylamine).

Fig. S16 The vapochromic photographs of 1 under the DEA vapor and then kept in air within different times.