Electronic Supplementary Information

Facile Chemical Solution Synthesis in an Open Condition for p-Type Delafossite Ag-based Transparent Conducting AgCrO₂ Films

Renhuai Wei,^a Xianwu Tang,^a Ling Hu,^a Jie Yang,^a Xiaoguang Zhu,^a Wenhai Song,^a Jianming Dai,^a Xuebin Zhu*^a, and Yuping Sun*^{abc}

- ^a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China.
- ^b High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.
- ^c Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

^{*}E-mail: xbzhu@issp.ac.cn (X.Z), ypsun@issp.ac.cn (Y.S)

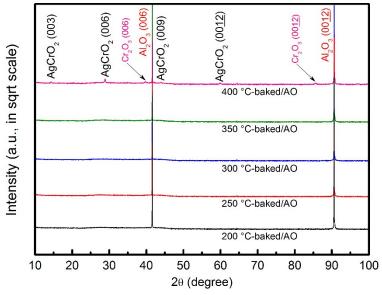


Figure S1. XRD patterns for all baked thin films on single crystal Al₂O₃ substrates.

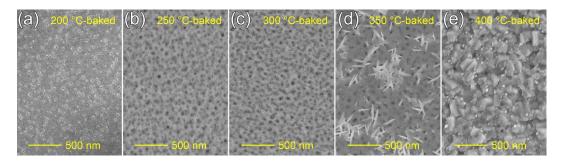


Figure S2. FE-SEM images for solution-derived thin films baked at different temperatures.

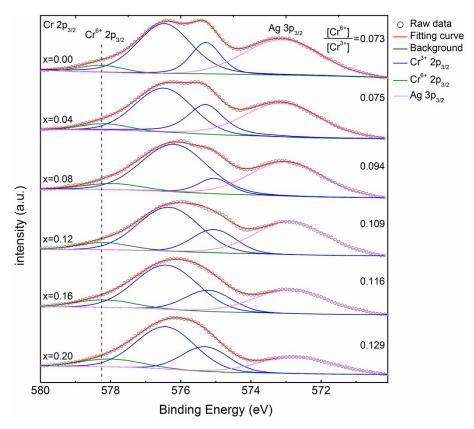


Figure S3. Peak deconvolution results about XPS of Cr 2p_{3/2} of all Mg-doped AgCrO₂ thin films.