Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

The impact of post-deposition annealing on the performance of solution-processed single layer In₂O₃ and isotype In₂O₃/ZnO heterojunction transistors

Kornelius Tetzner,*a Ivan Isakova, Anna Regoutz, David Payneb and Thomas D. Anthopoulos*a

^aDepartment of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom, *E-Mail: <u>k.tetzner@imperial.ac.uk; thomas.anthopoulos@imperial.ac.uk</u>

^bDepartment of Materials, London Royal School of Mines, Imperial College London, London SW7 2AZ, United Kingdom

Section SI1. Experimental results and theoretical analysis

Table S1. Thickness of solution-processed In_2O_3 and ZnO layers annealed at various temperatures as measuredby optical ellipsometry.

Annealing	Layer thickness			
temperature	(nm)			
(°C)	ZnO	In ₂ O ₃		
200 °C	7.0	6.5		
300 °C	6.8	5.8		
400 °C	7.2	5.9		
600 °C	8.5	6.7		

Figure S1. (a) Illustration of a simulation model with a bilayer film: a thin cylinder with flat bases is first considered for the XPS signal calculation. (b) Examples of atomic profile of the bilayer from a flat cylinder with different diffusion constants: 2 nm (solid line) and 0.5 nm (dashed line). (c) Example of a rough profile of a bilayer structure.

In order to calculate the XPS signal from zinc and indium atoms we assume a simple model illustrated in Fig. S1(a). Vertical distribution of the atomic concentrations di depends on zinc oxide thickness t_1 and diffusion coefficient d:

$$Di_{Zn} = \frac{1}{\left[\exp\left((z - t_{1})/d\right) + 1\right]} \text{ for Zn and}$$
(SI-1)
$$di_{In} = 1 - \frac{1}{\left[\exp\left((z - t_{1})/d\right) + 1\right]} \text{ for In}$$
(SI-2)

The example of the atomic profile is shown in **Fig. S1(b)**. The approximate XPS signal intensity depends exponentially on the inelastic mean free path l which is equal 2 nm for the studied films. Thus in order to calculate the XPS signal intensity dI from the zinc atoms in a flat thin cylinder, we need to solve the following integral:

$$dI_{Zn} = \int_{0}^{\infty} \frac{\exp\left(-\frac{z}{l}\right)}{\exp\left(\frac{z-t_{1}}{d}\right)+1} dz$$
(SI-3)

In general, the thickness is a variable which depends on roughness. Here we assume a similar roughness in both x and y direction (**Fig. S1(c)**). From histograms in **Fig.1 (c)** we can get the distribution of the deviations δt_1 from the average thickness t_{1avg} : $P_{Zn}(\delta t_1)$, where deviation is defined as $t_1 = t_{1avg} + \delta t_1$. Therefore we obtain the following expression for the average signal from zinc atoms:

$$I_{Zn} = \int_{\delta t_1} \int_0^\infty \frac{P_{Zn}(\delta t_1) \cdot exp[m](-z/l)}{\exp\left(\frac{z - t_{1avg} + \delta t_1}{d}\right) + 1} dz \, d\delta t_1$$
(SI-4)

In order to get a similar expression for indium atoms, it is necessary to integrate the flat cylinder intensity by both ZnO and InO_x roughness:

$$I_{In} = \iint_{\delta t_1 \delta t_2} \int_0^\infty \mathsf{P}_{Zn}(\delta t_1) \mathsf{P}_{In}(\delta t_2) \exp\left(-\frac{z}{l}\right) \left[1 - \frac{1}{\exp\left(\frac{z - t_{1avg} + \delta t_1 + \delta t_2}{d}\right) + 1}\right] dz \ d\delta t_1 d\delta t_2.$$
(SI-5)

For comparison between XPS signal intensities from indium and zinc, we assume equal concentration of indium and zinc atoms in indium oxide and zinc oxide layers respectively. The Zn:In ratio is calculated simply as I_{Zn}/I_{In} . The diffusion coefficients derived from the fitting between the experimental ratio and calculated ratio are shown in the **Table S2** below:

Table S2. Summary of elemental composition measured via XPS, layer surface roughness and simulated diffusion coefficients as a function of annealing temperature.

Annealing temperature	Experimental Zn:In ratio, from XPS	Roughness (nm)		Simulated diffusion coefficient
(°C)		ZnO	InO _x	(nm)

200	96:4	2.5	0.22	0.5
300	96:4	2.7	0.25	0.5
400	91:9	2.6	0.8	1.4
600	81:19	4.4	1.3	2.9

Figure S2. Zn L₃M_{4,5}M_{4,5} Auger line of the In₂O₃/ZnO bilayer samples annealed at varying temperatures.

Figure S3. XPS survey spectra of the (a) In_2O_3 single layer and the (b) In_2O_3/ZnO bilayer samples annealed at varying temperatures.

Figure S4. XPS valence band spectra of the In_2O_3 single layer and the In_2O_3/ZnO bilayer samples annealed at 600 °C including the linear fits used to determine the VB_{max} to E_F separation.

Figure S5. Transfer curves of patterned and un-patterned In₂O₃ single layer transistors annealed at 400 °C.