Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.
This journal is © The Royal Society of Chemistry 2016

Supplementary Information
The impact of post-deposition annealing on the performance of solution-processed single layer
In,0; and isotype In,0;/ZnO heterojunction transistors

Kornelius Tetzner," Ivan Isakov®, Anna Regoutz,® David Payne® and Thomas D. Anthopoulos*

aDepartment of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College
London, London SW7 2BW, United Kingdom,
*E-Mail: k.tetzner@imperial.ac.uk; thomas.anthopoulos@imperial.ac.uk

"Department of Materials, London Royal School of Mines, Imperial College London, London
SW7 2AZ, United Kingdom

Section SI1. Experimental results and theoretical analysis

Table S1. Thickness of solution-processed In,O; and ZnO layers annealed at various temperatures as measured
by optical ellipsometry.

Annealing Layer thickness
temperature (nm)
(OC) Zn0O Il’l203
200 °C 7.0 6.5
300 °C 6.8 5.8
400 °C 7.2 5.9
600 °C 8.5 6.7
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Figure S1. (a) Illustration of a simulation model with a bilayer film: a thin cylinder with flat bases is first
considered for the XPS signal calculation. (b) Examples of atomic profile of the bilayer from a flat cylinder with
different diffusion constants: 2 nm (solid line) and 0.5 nm (dashed line). (c) Example of a rough profile of a bilayer
structure.
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In order to calculate the XPS signal from zinc and indium atoms we assume a simple model illustrated
in Fig. S1(a). Vertical distribution of the atomic concentrations di depends on zinc oxide thickness ¢,
and diffusion coefficient d:

Diy, = 1/
[exp ((z - t;)/d) +1] for Zn and (SI-1)

=1-1 /
[exp ((z - t1)/d) + 1] o 1 (SI-2)

The example of the atomic profile is shown in Fig. S1(b). The approximate XPS signal intensity
depends exponentially on the inelastic mean free path / which is equal 2 nm for the studied films. Thus
in order to calculate the XPS signal intensity @/ from the zinc atoms in a flat thin cylinder, we need to
solve the following integral:
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In general, the thickness is a variable which depends on roughness. Here we assume a similar roughness

in both x and y direction (Fig. S1(c)). From histograms in Fig.1 (c) we can get the distribution of the
+ 6t

(SI-3)

deviations 51 from the average thickness b1avg: PZn(&l), where deviation is defined as t1 = t1avg
Therefore we obtain the following expression for the average signal from zinc atoms:

T P, (6t) - expisi( - z/1)
I, = dz dst,
Z = Uigyg + oty
oty 0 exp (—) +1
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In order to get a similar expression for indium atoms, it is necessary to integrate the flat cylinder
intensity by both ZnO and InO, roughness:

T Z 1
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d (SI-5)
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For comparison between XPS signal intensities from indium and zinc, we assume equal concentration
of indium and zinc atoms in indium oxide and zinc oxide layers respectively. The Zn:In ratio is
calculated simply as Izo/m . The diffusion coefficients derived from the fitting between the
experimental ratio and calculated ratio are shown in the Table S2 below:

Table S2. Summary of elemental composition measured via XPS, layer surface roughness and
simulated diffusion coefficients as a function of annealing temperature.

Annealing Experimental Roughness Simulated

temperature Zn:In ratio, (nm) diffusi'on

0 from XPS coefficient
zn0 | o, (nm)
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norm. intensity / a.u.

200 96:4 25 0.22 0.5
300 96:4 2.7 0.25 0.5
400 91:9 2.6 0.8 1.4
600 81:19 4.4 1.3 2.9
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Figure S2. Zn L;M, sM, s Auger line of the In,05/ZnO bilayer samples annealed at varying temperatures.
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Figure S3. XPS survey spectra of the (a) In,O; single layer and the (b) In,03/ZnO bilayer samples annealed at

varying temperatures.
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Figure S4. XPS valence band spectra of the In,O; single layer and the In,O3/ZnO bilayer samples annealed at
600 °C including the linear fits used to determine the VB, to Eg separation.
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Figure S5. Transfer curves of patterned and un-patterned In,0O5 single layer transistors annealed at 400 °C.
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