Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supplementary information for:

Band Alignment and Interface Properties Enhancement for Heterojunction Solar Cell by Employing Amorphous-Nanocrystalline Hierarchical Emitter Layer

Fengyou Wang $^{a, b, c}$, Rongchi Du b , Qianshang Ren b , Changchun Wei $^{b, c}$, Ying Zhao $^{b, c}$, Xiaodan Zhang $^{*b, c}$

^a Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China.

^b Institute of Photo Electronics thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology, Tianjin 300071, P. R. China ^c Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China

*Corresponding Author

Xiaodan Zhang, Email address: xdzhang@nankai.edu.cn

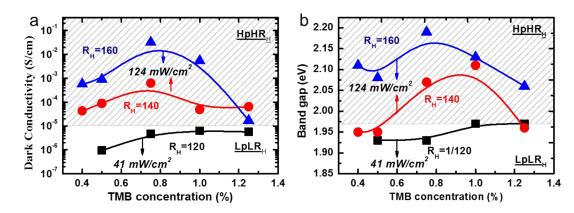


Fig. S1. (a) Dark conductivity and (b) band gap of p-type Si films deposited with various TMB concentrations.

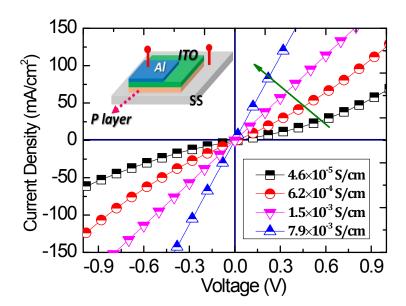


Fig. S2. J–V measurement results of the samples with SS / p layer / ITO / Al architecture. The conductivity of p layer was increased from 4.6×10^{-5} S/cm to 7.9×10^{-3} S/cm.