Supporting Information

A Versatile Strategy for Fabricating Various Cu₂ZnSnS₄ Precursor Solutions

Kaisi Liu,^{1,2} Bin Yao,² Yongfeng Li,² Zhanhui Ding,² Hao Sun,² Yuhong Jiang,² Gang Wang*,¹

and Daocheng Pan*,1

¹State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun,130022, China. E-mail: wsu@ciac.ac.cn; pan@ciac.ac.cn

²Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China.

Fig. S1 The butyl-dithiocarbamate-based CZTS precursor solutions used the DMSO (left) and the 2-methoxyethanol (right) as the solvents.

Fig. S2 The top-view SEM image of as-prepared CZTS film fabricated by the methyldithiocarbamate CZTS precursor solution.

Fig. S3 The top-view SEM image of as-prepared CZTS film fabricated by the ethyldithiocarbamate CZTS precursor solution.

Fig. S4 The XRD patterns of selenized thin films fabricated by the methyl-, ethyl-, propyl-, butyl-, amyl-, hexyl-, and octyl- dithiocarbamate-based CZTS precursor solutions.