Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Efficient Thermally Activated Delayed Fluorescence of Functional Phenylpyridinato Boron Complexes and High Performance Organic Light-Emitting Diodes

Yi-Jiun Shiu,^{a,‡} Yi-Ting Chen,^{b,‡} Wei-Kai Lee,^a Chung-Chih Wu,^{a,*} Tzu-Chieh Lin,^b Shih-Hung Liu,^b Pi-Tai Chou,^{b,*} Chin-Wei Lu,^c I-Chen Cheng,^c Yi-Jyun Lien,^c and Yun Chi,^{c,*}

^a Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; E-mail: <u>wucc@ntu.edu.tw</u>

^b Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; E-mail: <u>chop@ntu.edu.tw</u>

^c Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan; E-mail: ychi@mx.nthu.edu.tw

[‡] Authors with equal contribution.

Tale of content	page
Figure X1. Structural drawing, selected bond distances and angles, and crystal data of	
fppyBTPA.	
Figure X2. Structural drawing, selected bond distances and angles, and crystal data of	
fppyBPCz.	
Figure S1 (a). Frontier molecular orbitals pertinent to the optical transitions for	
fppyBTPA in toluene.	
Figure S1 (b). Frontier molecular orbitals pertinent to the optical transitions for	
fppyBTPA in dichloromethane.	
Figure S1 (c). Frontier molecular orbitals pertinent to the optical transitions for	
fppyBTPA in acetonitrile.	
Figure S2 (a). Frontier molecular orbitals pertinent to the optical transitions for	
fppyBPCz in toluene.	
Figure S2 (b). Frontier molecular orbitals pertinent to the optical transitions for	

fppyBPCz in dichloromethane.	
Figure S2 (c). Frontier molecular orbitals pertinent to the optical transitions for fppyBPCz	
in acetonitrile.	
Figure S3 (a). Frontier molecular orbitals pertinent to the optical transitions for	
fppyBCzP in toluene.	
Figure S3 (b). Frontier molecular orbitals pertinent to the optical transitions for	
fppyBCzP in dichloromethane.	
Figure S3 (c). Frontier molecular orbitals pertinent to the optical transitions for fppyBCzP	
in acetonitrile.	
Figure S4 (a). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBTPA in toluene.	
Figure S4 (b). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBTPA in dichloromethane.	
Figure S4 (c). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBTPA in acetonitrile.	
Figure S5 (a). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBPCz in toluene.	
Figure S5 (b). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBPCz in dichloromethane.	
Figure S5 (c). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBPCz in acetonitrile.	
Figure S6 (a). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBCzP in toluene.	
Figure S6 (b). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBCzP in dichloromethane.	
Figure S6 (c). Frontier molecular orbitals pertinent to the optical transitions for	
dfppyBCzP in acetonitrile.	
Figure S7. TGA data of fppyBTPA, fppyBPCz, fppyBCzP, dfppyBTPA, dfppyBPCz, and	
dfppyBCzP. The samples were heated under a nitrogen atmosphere at a heating rate of	
15 °C/min.	
Figure S8. DSC data of fppyBTPA, fppyBPCz, fppyBCzP, dfppyBTPA, dfppyBPCz, and	
dfppyBCzP. The samples were heated and cooled under a nitrogen atmosphere at a rate	
of 10 °C/min.	
Figure S9. Cyclic voltammograms of fppyBTPA, fppyBPCz, fppyBCzP, dfppyBTPA,	
dfppyBPCz, and dfppyBCzP. The oxidation and reduction experiments were conducted in	
CH_2Cl_2 and acetonitrile solution, respectively. The glassy carbon was selected as the	
working electrode for both oxidation and reduction processes.	

Figure S10. (a) PL spectra and (b) transient PL profiles (measured at room temperature)	
of fppyBPCz, fppyBCzP, dfppyBPCz and dfppyBCzP doped (with 8 wt.% concentration) in	
the DPEPO host.	
Figure S11. PL peak wavelengths vs. oxidation potential for compounds in (a) toluene	
solution, (b) doped mCPCN films, and (c) doped DPEPO films.	
Figure S12. PL spectra (measured at room temperature) and phosphorescence spectra	
(measured at 77 K) of (a) fppyBTPA , (b) fppyBPCz , (c) fppyBCzP , (d) dfppyBTPA , (e)	
dfppyBPCz and (f) dfppyBCzP doped in the mCPCN host (with 8 wt.% concentration).	
Figure S13. PL spectra (measured at room temperature) and phosphorescence spectra	
(measured at 77 K) of (a) fppyBPCz, (b) fppyBCzP , (c) dfppyBPCz and (d) dfppyBCzP	
doped in the DPEPO host (with 8 wt.% concentration).	
Figure S14. (a) PL spectra (measured at room temperature) and (b) phosphorescence	
spectra (measured at 77 K) of neat mCPCN and DPEPO films.	
Figure S15. Molecular structures of materials used in OLEDs and thin-film samples.	
Figure S16. Relative energy levels of various materials used in OLEDs.	
Figure S17. (a) EL spectra and (b) current-voltage-luminance (I-V-L) characteristics, (c)	
external quantum efficiencies (EQEs), and (d) power efficiencies of the dfppyBTPA	
devices with different dfppyBTPA doping concentrations.	
Figure S18. (a) EL spectra and (b) current-voltage-luminance (I-V-L) characteristics, (c)	
external quantum efficiencies (EQEs), and (d) power efficiencies of the fppyBTPA devices	
with different fppyBTPA doping concentrations.	
Figure S19. Photos of the operating (a) fppyBTPA and (b) dfppyBTPA devices.	
Table S1 (a). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for fppyBTPA in toluene.	
Table S1 (b). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for fppyBTPA in dichloromethane.	
Table S1 (c). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for fppyBTPA in acetonitrile.	
Table S2 (a). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for fppyBPCz in toluene.	
Table S2 (b). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for fppyBPCz in dichloromethane.	
Table S2 (c). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for fppyBPCz in acetonitrile.	
Table S3 (a). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for fppyBCzP in toluene.	
Table S3 (b). The calculated wavelengths, transition probabilities and charge transfer	

character of the lowest optical transitions for fppyBCzP in dichloromethane.	
Table S3 (c). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for fppyBCzP in acetonitrile.	
Table S4 (a). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBTPA in toluene.	
Table S4 (b). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBTPA in dichloromethane.	
Table S4 (c). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBTPA in acetonitrile.	
Table S5 (a). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBPCz in toluene.	
Table S5 (b). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBPCz in dichloromethane.	
Table S5 (c). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBPCz in acetonitrile.	
Table S6 (a). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBCzP in toluene.	
Table S6 (b). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBCzP in dichloromethane.	
Table S6 (c). The calculated wavelengths, transition probabilities and charge transfer	
character of the lowest optical transitions for dfppyBCzP in acetonitrile.	
Table S7. Photophysical properties of the complexes in CH_2Cl_2 and acetonitrile at room	
temperature.	
Table S8. Thermal analysis of fppyBTPA, fppyBPCz, fppyBCzP, dfppyBTPA, dfppyBPCz,	
and dfppyBCzP. [a] Temperature at 5% weight loss to initial weight.	
Table S9. Electrochemical properties and calculated bandgaps of fppyBTPA, fppyBPCz,	
fppyBCzP, dfppyBTPA, dfppyBPCz, and dfppyBCzP.	
Table S10. EL parameters of the fppyBTPA and dfppyBTPA based OLED devices with	
different doping concentrations.	
Reference	

Figure X1. (a) Structural drawing of **fppyBTPA** with thermal ellipsoids shown at 50% probability level. Selected bond distances: B(1)-C(1) = 1.614(2), B(1)-N(1) = 1.624(2), B(1)-C(12) = 1.623(2), B(1)-C(30) 1.610(2) Å, and bond angles: N(1)-B(1)-C(1) = 96.59(11) and C(12)-B(1)-C(30) = 112.55(12)°. Selected crystal data: C₄₇H₃₅BFN₃; M = 671.59; T = 200(2) K; triclinic; space group = P–1; *a* = 9.7399(5) Å, *b* = 13.7142(8) Å, *c* = 14.6944(8) Å; α = 101.835(3)°, β = 95.538(2)°, γ = 110.288(2)°, V = 1771.61(17) Å³; *Z* = 2; ρ_{calcd} = 1.259 Mg·m⁻³; *F*(000) = 704; μ = 0.077 mm⁻¹; crystal size = 0.200 × 0.150 × 0.070 mm³; λ (Mo-K_α) = 0.71073 Å; 16238 reflections collected, 8134 independent reflections (R_{int} = 0.0195), restraints / parameters = 0 / 469, GOF = 1.008, final R₁[*I* > 2σ(*I*)] = 0.0515 and *w*R₂(all data) = 0.1399; largest diff. peak and hole = 1.092 and -0.490 e·Å⁻³. Comprehensive structural information: CCDC 1517425.

Figure X2. (a) Structural drawing of **fppyBPCz** with thermal ellipsoids shown at 50% probability level. Selected bond distances: B(1)-C(1) = 1.620(5), B(1)-N(1) = 1.626(5), B(1)-C(12) = 1.617(5), B(1)-C(30) 1.622(5) Å, and bond angles: N(1)-B(1)-C(1) = 96.8(2) and C(12)-B(1)-C(30) = 114.7(3)°. Selected crystal data: C₄₇H₃₁BFN₃; M = 667.56; T = 200(2) K; monoclinic; space group = C_C; *a* = 22.2980(9) Å, *b* = 12.8948(5) Å, *c* = 16.2166(6) Å; β = 131.7267(13)°, *V* = 3479.9(2) Å³; *Z* = 4; ρ_{calcd} = 1.274 Mg·m⁻³; *F*(000) = 1392; μ = 0.610 mm⁻¹; crystal size = 0.250 × 0.200 × 0.200 mm³; λ (Mo-K_α) = 0.71073 Å; 11879 reflections collected, 6539 independent reflections (R_{int} = 0.0257), restraints / parameters = 2 / 470, GOF = 1.048, final R₁[*I* > 2σ(*I*)] = 0.0481 and *w*R₂(all data) = 0.1381; largest diff. peak and hole = 0.826 and -0.369 e·Å⁻³. Comprehensive structural information: CCDC 1517424.

Figure S1 (a). Frontier molecular orbitals pertinent to the optical transitions for **fppyBTPA** in toluene.

Figure S1 (b). Frontier molecular orbitals pertinent to the optical transitions for **fppyBTPA** in dichloromethane.

Figure S1 (c). Frontier molecular orbitals pertinent to the optical transitions for **fppyBTPA** in acetonitrile.

Figure S2 (a). Frontier molecular orbitals pertinent to the optical transitions for fppyBPCz in toluene.

Figure S2 (b). Frontier molecular orbitals pertinent to the optical transitions for **fppyBPCz** in dichloromethane.

Figure S2 (c). Frontier molecular orbitals pertinent to the optical transitions for **fppyBPCz** in acetonitrile.

Figure S3 (a). Frontier molecular orbitals pertinent to the optical transitions for fppyBCzP in toluene.

Figure S3 (b). Frontier molecular orbitals pertinent to the optical transitions for **fppyBCzP** in dichloromethane.

Figure S3 (c). Frontier molecular orbitals pertinent to the optical transitions for **fppyBCzP** in acetonitrile.

Figure S4 (a). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBTPA** in toluene.

Figure S4 (b). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBTPA** in dichloromethane.

Figure S4 (c). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBTPA** in acetonitrile.

Figure S5 (a). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBPCz** in toluene.

Figure S5 (b). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBPCz** in dichloromethane.

Figure S5 (c). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBPCz** in acetonitrile.

Figure S6 (a). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBCzP** in toluene.

Figure S6 (b). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBCzP** in dichloromethane.

Figure S6 (c). Frontier molecular orbitals pertinent to the optical transitions for **dfppyBCzP** in acetonitrile.

Figure S7. TGA data of **fppyBTPA**, **fppyBPCz**, **fppyBCzP**, **dfppyBTPA**, **dfppyBPCz**, and **dfppyBCzP**. The samples were heated under a nitrogen atmosphere at a heating rate of 15 °C/min.

Figure S8. DSC data of **fppyBTPA**, **fppyBPCz**, **fppyBCzP**, **dfppyBTPA**, **dfppyBPCz**, and **dfppyBCzP**. The samples were heated and cooled under a nitrogen atmosphere at a rate of 10 °C/min.

Figure S9. Cyclic voltammograms of **fppyBTPA**, **fppyBPCz**, **fppyBCzP**, **dfppyBTPA**, **dfppyBPCz**, and **dfppyBCzP**. The oxidation and reduction experiments were conducted in CH₂Cl₂ and acetonitrile solution, respectively. The glassy carbon was selected as the working electrode for both oxidation and reduction processes.

Figure S10. (a) PL spectra and (b) transient PL profiles (measured at room temperature) of **fppyBPCz, fppyBCzP, dfppyBPCz** and **dfppyBCzP** doped (with 8 wt.% concentration) in the DPEPO host.

Figure S11. PL peak wavelengths vs. oxidation potential for compounds in (a) toluene solution, (b) doped mCPCN films, and (c) doped DPEPO films.

Figure S12. PL spectra (measured at room temperature) and phosphorescence spectra (measured at 77 K) of (a) **fppyBTPA**, (b) **fppyBPCz**, (c) **fppyBCzP**, (d) **dfppyBTPA**, (e) **dfppyBPCz** and (f) **dfppyBCzP** doped in the mCPCN host (with 8 wt.% concentration).

Figure S13. PL spectra (measured at room temperature) and phosphorescence spectra (measured at 77 K) of (a) **fppyBPCz**, (b) **fppyBCzP**, (c) **dfppyBPCz** and (d) **dfppyBCzP** doped in the DPEPO host (with 8 wt.% concentration).

Figure S14. (a) PL spectra (measured at room temperature) and (b) phosphorescence spectra (measured at 77 K) of neat mCPCN and DPEPO films.

Figure S15. Molecular structures of materials used in OLEDs and thin-film samples.

Figure S16. Relative energy levels of various materials used in OLEDs.

Figure S17. (a) EL spectra and (b) current-voltage-luminance (I-V-L) characteristics, (c) external quantum efficiencies (EQEs), and (d) power efficiencies of the **dfppyBTPA** devices with different **dfppyBTPA** doping concentrations.

Figure S18. (a) EL spectra and (b) current-voltage-luminance (I-V-L) characteristics, (c) external quantum efficiencies (EQEs), and (d) power efficiencies of the **fppyBTPA** devices with different **fppyBTPA** doping concentrations.

Figure S19. Photos of the operating (a) fppyBTPA (8 wt.%) and (b) dfppyBTPA (25 wt.%) devices.

Figure S20. The time-dependent brightess in % under an initial brightness of 200-250 $cd \cdot m^{-2}$ for fppyBTPA and dfppyBTPA

Table S1 (a). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBTPA** in toluene.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	500.1	0	HOMO → LUMO (97%)
$S_0 \rightarrow S_1$	496.2	0.0057	HOMO → LUMO (99%)

Table S1 (b). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBTPA** in dichloromethane.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	467.1	0	HOMO → LUMO (94%)
$S_0 \rightarrow S_1$	463.1	0.0062	HOMO → LUMO (98%)

Table S1 (c). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBTPA** in acetonitrile.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	456.9	0	HOMO → LUMO (92%)
$S_0 \rightarrow S_1$	452.7	0.0062	HOMO → LUMO (98%)

Table S2 (a). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBPCz** in toluene.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	433.5	0	HOMO → LUMO (94%)
$S_0 \rightarrow S_1$	430.9	0.0036	HOMO → LUMO (98%)

Table S2 (b). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBPCz** in dichloromethane.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	416.4	0	HOMO-4 \rightarrow LUMO (66%) HOMO-4 \rightarrow LUMO+1 (11%)
$S_0 \rightarrow S_1$	399.3	0.0045	HOMO \rightarrow LUMO (98%)

Table S2 (c). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBPCz** in acetonitrile.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	414.8	0	HOMO-4 LUMO (68%) HOMO-4 LUMO+1 (11%)
$S_0 \rightarrow S_1$	389.9	0.0048	HOMO → LUMO (98%)

Table S3 (a). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBCzP** in toluene.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	447.9	0	HOMO → LUMO (94%)
$S_0 \rightarrow S_1$	442.1	0.0057	HOMO → LUMO (98%)

Table S3 (b). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBCzP** in dichloromethane.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	425.5	0	HOMO \rightarrow LUMO (73%) HOMO-4 \rightarrow LUMO (15%)
$S_0 \rightarrow S_1$	418.4	0.007	HOMO → LUMO (98%)

Table S3 (c). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **fppyBCzP** in acetonitrile.

State	λ (nm)	f	Assignments			
$S_0 \rightarrow T_1$	419.7	0	HOMO → LUMO (38%) HOMO-4 → LUMO (35%) HOMO-1 → LUMO (10%) HOMO-4 → LUMO+1 (6%)			
$S_0 \rightarrow S_1$	410.3	0.0072	HOMO → LUMO (98%)			

Table S4 (a). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBTPA** in toluene.

State	λ (nm)	f	Assignments
$S_0 \rightarrow T_1$	508.8	0	HOMO → LUMO (96%)
$S_0 \rightarrow S_1$	504.9	0.0063	HOMO → LUMO (99%)

Table S4 (b). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBTPA** in dichloromethane.

State	λ (nm)	f	Assignments			
$S_0 \rightarrow T_1$	477.2	0	HOMO → LUMO (94%)			
$S_0 \rightarrow S_1$	473	0.0068	HOMO → LUMO (98%)			

Table S4 (c). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBTPA** in acetonitrile.

State	λ (nm)	f	Assignments			
$S_0 \rightarrow T_1$	467.1	0	HOMO \rightarrow LUMO (92%) HOMO-1 \rightarrow LUMO (5%)			
$S_0 \rightarrow S_1$	462.8	0.0067	HOMO → LUMO (98%)			

Table S5 (a). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBPCz** in toluene.

State	λ (nm)	f	Assignments			
$S_0 \rightarrow T_1$	441	0	HOMO → LUMO (95%)			
$S_0 \rightarrow S_1$	438.7	0.0039	HOMO → LUMO (98%)			

Table S5 (b). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBPCz** in dichloromethane.

State	λ (nm)	f	Assignments				
$S_0 \rightarrow T_1$	411.4	0	HOMO → LUMO (41%) HOMO-4 → LUMO (39%) HOMO-1 → LUMO (7%) HOMO-4 → LUMO+1 (5%)				
$S_0 \rightarrow S_1$	407.4	0.0047	HOMO → LUMO (98%)				

Table S5 (c). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBPCz** in acetonitrile.

State	λ (nm)	f	Assignments		
$S_0 \rightarrow T_1$	408.8	0	HOMO-4 → LUMO (66%) HOMO-4 → LUMO+1 (10%) HOMO-1 → LUMO (7%)		
$S_0 \rightarrow S_1$	397.9	0.0049	HOMO → LUMO (98%)		

Table S6 (a). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBCzP** in toluene.

State	λ (nm)	f	Assignments			
$S_0 \rightarrow T_1$	453.3	0	HOMO → LUMO (96%)			
$S_0 \rightarrow S_1$	447.9	0.0065	HOMO → LUMO (98%)			

Table S6 (b). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBCzP** in dichloromethane.

State	λ (nm)	f	Assignments			
$S_0 \rightarrow T_1$	431	0	HOMO → LUMO (94%)			
$S_0 \rightarrow S_1$	425.5	0.0077	HOMO → LUMO (98%)			

Table S6 (c). The calculated wavelengths, transition probabilities and charge transfer character of the lowest optical transitions for **dfppyBCzP** in acetonitrile.

State	λ (nm)	f	Assignments		
$S_0 \rightarrow T_1$	423.4	0	HOMO → LUMO (92%)		
$S_0 \rightarrow S_1$	417.7	0.0078	HOMO → LUMO (98%)		

Compound	CT [nm]	PLQY [%]	τ_{CT} [ns] ^[b] (pre-exp factor)	ΔE_{T-S} [kcal/mol]					
In DCM									
fppyBTPA	600	11.1 ^[a] , 13.1 ^[b]	29.6(–)						
fppyBPCz	508	16.1 ^[a] , 60.7 ^[b]	118.2 (–)						
fppyBCzP	519	20.2 ^[a] , 56.0 ^[b]	58.6 (–)						
dfppyBTPA	610	10.2 ^[a] , 17.9 ^[b]	29.7 (–)						
dfppyBPCz	516	19.1 ^[a] , 24.4 ^[b]	49.7 (–)						
dfppyBCzP	529	16.8 ^[a] , 49.6 ^[b]	60.1 (0.9763); 2767.6 (0.0237)	-2.20					
			In CH ₃ CN						
fppyBTPA	653	0.8 ^[a] , 0.8 ^[b]	2.5 (–)						
fppyBPCz	561	4.8 ^[a] , 24.0 ^[b]	72.9 (–)						
fppyBCzP	557	7.3 ^[a] , 16.8 ^[b]	35.1 (–)						
dfppyBTPA	670	0.4 ^[a] , 0.5 ^[b]	0.6 (–)						
dfppyBPCz	551	2.8 ^[a] , 6.6 ^[b]	33.0 (–)						
dfppyBCzP	570	6.4 ^[a] , 14.1 ^[b]	26.4 (–)						

Table S7. Photophysical properties of the complexes in CH_2Cl_2 and CH_3CN at room temperature.

[a] measured in aerated solution. [b] measured in degassed solution. [c] (–) indicates that the emission can be fitted solely by a single exponential decay kinetics.

Table S8. Thermal analysis of fppyBTPA, fppyBPCz, fppyBCzP, dfppyBTPA, dfppyBPCz, anddfppyBCzP. [a] Temperature at 5% weight loss to initial weight.

	fppyBTPA	fppyBPCz	fppyBCzP	dfppyBTP	dfppyBPC	dfppyBCz
		.6672. 02		Α	Z	Р
T _g (°C)	140	135	146	137	142	124
7 _d (°C) ^[a]	392	352	316	359	267	307

Complex	E _{1/2} ^{ox1}	E _{pc} re	HOMO (eV)		LUMO (eV)		Bandgap (eV)	
	(V) ^[a]	(V) ^[a]	CV ^[b]	DFT	CV ^[b]	DFT	CV	DFT
fppyBTPA	0.29	-2.45	5.09		2.35		2.74	
fppyBPCz	0.80	-2.46	5.39		2.32		3.07	
fppyBCzP	0.62	-2.43	5.42		2.37		3.05	
dfppyBTPA	0.31	-2.35	5.11		2.45		2.66	
dfppyBPCz	0.79	-2.37	5.39		2.43		2.96	
dfppyBCzP	0.65	-2.37	5.45		2.43		3.02	

Table S9. Electrochemical properties and calculated bandgaps of fppyBTPA, fppyBPCz, fppyBCzP,dfppyBTPA, dfppyBPCz, and dfppyBCzP.

[a] $E_{1/2}^{ox1}$ and E_{pc}^{re} are the anodic and cathodic peak potentials referenced to the Fc⁺/Fc couple. [b] HOMO = $|-4.8 - E_{1/2}^{ox1}|$, LUMO = $|-4.8 - E_{pc}^{re}|$. **Table S10.** EL parameters of the **fppyBTPA** and **dfppyBTPA** based OLED devices with differentdoping concentrations.

DEVICE	CONC.		EQE	CURRENT	POWER EFF.
			[%]	EFF. [CD · A ⁻¹]	[LM [·] W ⁻¹]
fppyBTPA	4wt%	Peak	12	38.0	37.3
		100 cd [.] m ⁻²	8.6	27.3	17.2
	8wt%	Peak	20.2	63.9	66.9
		100 cd [.] m ⁻²	15.5	49.1	28.5
	12wt%	Peak	18.1	57.3	53.0
		100 cd [.] m ⁻²	13.4	42.3	24.6
	20wt%	Peak	17.2	55.7	46.0
		100 cd [.] m ⁻²	13.6	44.0	24.7
	25wt%	Peak	16.7	46.4	48.6
		100 cd [.] m ⁻²	13.4	42.5	23.8
	50wt%	Peak	14	45.5	34.0
		100 cd [.] m ⁻²	9.7	31.4	15.9
	75wt%	Peak	9.5	29.4	20.1
		100 cd [.] m ⁻²	4.0	12.4	5.24
dfppyBTPA	4wt%	Peak	14.2	45.7	39.9
		100 cd [.] m ⁻²	11.8	38.0	22.9
	8wt%	Peak	22.1	63.7	66.8
		100 cd [.] m ⁻²	18.3	52.8	33.2
	12wt%	Peak	23.4	69.7	68.4
		100 cd [.] m ⁻²	19.7	58.7	40.1
	20wt%	Peak	25.7	81.6	71.2
		100 cd ⁻ m ⁻²	25.4	80.5	63.2
	25wt%	Peak	26.6	88.2	81.5
		100 cd ⁻ m ⁻²	25.3	83.9	59.9
	50wt%	Peak	20.5	65.6	64.4
		100 cd ' m ⁻²	18.4	58.7	40.1
	75wt%	Peak	15.9	49.6	43.2
		100 cd [.] m ⁻²	12.4	38.7	24.3

Reference

1. M.-S. Lin, S.-J. Yang, H.-W. Chang, Y.-H. Huang, Y.-T. Tsai, C.-C. Wu, S.-H. Chou, E. Mondal, K.-T. Wong, *J. Mater. Chem.*, 2012, **22**, 16114.

2. W.-L. Tsai, M.-H. Huang, W.-K. Lee, Y.-J. Hsiu, K.-C. Pan, Y.-H. Huang, H.-C. Ting, M. Sarma, Y.-Y.

Ho, H.-C. Hu, C.-C. Chen, M.-T. Lee, K.-T. Wong, C.-C. Wu, Chem. Commun., 2015, 51, 13662.

3. C.-Y. Kuei, W.-L. Tsai, B. Tong, M. Jiao, W.-K. Lee, Y. Chi, C.-C. Wu, S.-H. Liu, G.-H. Lee, P.-T. Chou, *Adv. Mater.*, 2016, **28**, 2795.

4. T.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, *Adv. Mater.*, 2016, **28**, 6976.

5. Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi, C. Adachi, *Adv. Funct. Mater.*, 2012, **22**, 2327.

6. T. Nakagawa, S.-Y. Ku, K.-T. Wong, C. Adachi, Chem. Commun., 2012, 48, 9580.