Dynamic nature of excited states of donor-acceptor TADF materials for OLEDs: how theory can reveal structure-property relationships.

Yoann Olivier¹, Monica Moral^{2,3}, Luca Muccioli^{4,5}, and Juan-Carlos Sancho-Garcia³

¹Laboratory for Chemistry of Novel Materials, University of Mons, 7000 Mons, Belgium, E-mail: <u>yoann.olivier@umons.ac.be</u>

²Renewable Energy Research Institute, University of Castilla-La Mancha, 02071 Albacete, Spain

³Departamento de Química Física, University of Alicante, 03080 Alicante, Spain ⁴Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, 33405 Talence, France

⁵Dipartimento di Chimica Industriale "Toso Montanari", University of Bologna, 40136 Bologna, Italy

Table of contents

Pages 2-21: Figures S1 to S21 Pages 22-27: Tables S1 to S5

Figure S1: Isocontour plots (cutoff=0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PXD donor (left) is combined with the OXD acceptor (right) giving rise to the PXZ-OXD and 2PXZ-OXD equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.

Figure S2: Isocontour plots (cutoff= 0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PXZ donor (left) is combined with the TDZ acceptor (right) giving rise to the PXZ-TDZ and 2PXZ-TDZ equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.

Figure S3: Isocontour plots (cutoff= 0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PXZ donor (left) is combined with the TAZ acceptor (right) giving rise to the PXZ-TAZ and 2PXZ-TAZ equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.

Figure S4: Isocontour plots (cutoff= 0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PTZ donor (left) is combined with the OXD acceptor (right) giving rise to the PTZ-OXD and 2PTZ-OXD equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.

Figure S5: Isocontour plots (cutoff= 0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PTZ donor (left) is combined with the TDZ acceptor (right) giving rise to the PTZ-TDZ and 2PTZ-TDZ equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.

Figure S6: Comparison between the HOMO and LUMO energies of all compounds studied computed at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene).

Figure S7: Excited states energy diagram, computed at the TDA-PBEO-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case where PXZ donor (left) is combined with TDZ acceptor (right) moieties giving rise to the PXZ-TDZ and 2PXZ-TDZ equatorial conformers (center).

Figure S8: Excited states energy diagram, computed at the TDA-PBEO-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case where PXZ donor (left) is combined with TAZ acceptor (right) moieties giving rise to the PXZ-TAZ and 2PXZ-TAZ equatorial conformers (center).

Figure S9: Excited states energy diagram, computed at the TDA-PBEO-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case where PTZ donor (left) is combined with OXD acceptor (right) moieties giving rise to the PTZ-OXD and 2PTZ-OXD equatorial conformers (center).

Figure S10: Excited states energy diagram, computed at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case where PTZ donor (left) is combined with TDZ acceptor (right) moieties giving rise to the PTZ-TDZ and 2PTZ-TDZ equatorial conformers (center).

Figure S11: Front and side views of a) PXZ and b) PTZ electron donors.

Figure S12: a) Front and b) side views of the TAZ electron acceptor.

Figure S13: Hole (in blue) and electron (in green) density centroids of 2PXZ-OXD calculated in the attachment/detachment formalism

Figure S14: Isocontour plots (cutoff= 0.02 a.u.) of the frontier orbitals (HOMO and LUMO), computed at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case of PTZ-OXD, PTZ-TDZ and PTZ-TAZ axial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.

Figure S15: Isocontour plots (cutoff= 0.02 a.u.) of the calculated frontier orbitals (HOMO and LUMO), computed at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case of 2PTZ-OXD, 2PTZ-TDZ and 2PTZ-TAZ axial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.

Figure S16: Oscillator strength normalized to the S₁ excitation energy as a function of $\phi_S^2(S_1)$ for **a**) PXZ-OXD and **b**) PTZ-TAZ. The straight lines represent linear fits of the data. For PTZ-TAZ, two different linear fits are required in order to interpolate the data corresponding to CT- and LE-dominated excitations.

Figure S17: Two-dimensional torsion energy profiles (in kcal/mol), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (a) OXD, b) TDZ and c) TAZ).

Figure S18: Evolution of the singlet-triplet energy gap ΔE_{ST} (in eV), calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (**a**) OXD, **b**) TDZ and **c**) TAZ).

Figure S19: Evolution of the oscillator strength (O.S.), calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (**a**) OXD, **b**) TDZ and **c**) TAZ).

Figure S20: Evolution of the overlap between the hole and electron densities related to the electronic transition to S_1 (ϕ_s (S_1)), calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (**a**) OXD, **b**) TDZ and **c**) TAZ).

Figure S21: Evolution of the overlap between the hole and electron densities related to the electronic transition to T_1 (ϕ_s (T_1)), calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (**a**) OXD, **b**) TDZ and **c**) TAZ).

		ΔE			ΔE
Compound	Conformer	(kcal/mol)	Compound	Conformer	(kcal/mol)
PXZ-OXD	axial	2.24	2PXZ-OXD	axial	4.46
	equatorial	-		equatorial	-
PXZ-TDZ	axial	2.36	2PXZ-TDZ	axial	4.79
	equatorial	-		equatorial	-
PXZ-TAZ	axial	3.29	2PXZ-TAZ	axial	6.59
	equatorial	-		equatorial	-
PTZ-OXD	axial	-	2PTZ-OXD	axial	-
	equatorial	0.84		equatorial	1.54
PTZ-TDZ	axial	-	2PTZ-TDZ	axial	-
	equatorial	0.65		equatorial	1.24
PTZ-TAZ	axial	0.14	2PTZ-TAZ	axial	0.73
	equatorial	-		equatorial	-

Table S1: Relative energies between axial and equatorial (in kcal/mol) conformers for D-A and D-A-D compounds calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene).

		ΔE			ΔE
Compound	Conformer	(kcal/mol)	Compound	Conformer	(kcal/mol)
PXZ-OXD	axial	2.51	2PXZ-OXD	axial	5.03
	equatorial	-		equatorial	-
PXZ-TDZ	axial	2.75	2PXZ-TDZ	axial	5.54
	equatorial	-		equatorial	-
PXZ-TAZ	axial	3.53	2PXZ-TAZ	axial	7.14
	equatorial	-		equatorial	-
PTZ-OXD	axial	-	2PTZ-OXD	axial	-
	equatorial	0.64		equatorial	1.11
PTZ-TDZ	axial	-	2PTZ-TDZ	axial	-
	equatorial	0.35		equatorial	0.60
PTZ-TAZ	axial	0.36	2PTZ-TAZ	axial	1.08
	equatorial	-		equatorial	-

Table S2: Relative energies between axial and equatorial (in kcal/mol) conformers for D-A and D-A-D compounds calculated at the PBE0-D3(BJ)/def2TZVP level of theory with the PCM module for solvent (toluene).

	PXZ-OXD (Cs)				PXZ-TDZ (Cs)				PXZ-TAZ (C1)			
	Energy (eV)	O.S.	фs	∆r (Å)	Energy (eV)	0.S.	фs	∆r (Å)	Energy (eV)	0.S.	phi_S	∆r (Å)
T ₁	2.5927	-	0.15	5.58	2.3523	-	0.13	6.52	2.9434	-	0.38	4.39
S ₁	2.604	0	0.15	5.62	2.36	0	0.12	6.56	3.0079	0.0425	0.19	4.95
$\Delta \mathbf{E}^{\text{ST}}$	0.0113				0.0077				0.0645			

	PTZ-OXD (Cs)				PTZ-TDZ (Cs)				PTZ-TAZ (C1)			
	Energy (eV)	O.S.	фs	∆r (Å)	Energy (eV)	0.S.	фs	∆r (Å)	Energy (eV)	0.S.	фs	∆r (Å)
T ₁	2.9193	-	0.23	5.48	2.6952	-	0.17	6.62	3.1769	-	0.72	0.85
S ₁	2.9388	0	0.17	5.75	2.7062	0	0.14	6.73	3.3453	0.0004	0.23	4.98
$\Delta \mathbf{E}^{\text{ST}}$	0.0195				0.011				0.1684			

	2PXZ-OXD (C2V)				2PXZ-TDZ (C2V)				2PXZ-TAZ (C2)			
_	Energy (eV)	0.S.	фs	∆r (Å)	Energy (eV)	O.S.	фs	∆r (Å)	Energy (eV)	O.S.	фs	∆r (Å)
T ₁	2.4777	-	0.16	1.85	2.2459	-	0.14	0.56	2.897	-	0.24	0.85
S ₁	2.4876	0	0.15	1.86	2.2529	0	0.14	0.56	2.9174	0	0.19	0.87
ΔE _{st}	0.0099				0.007				0.0204			

	2PTZ-OXD (Cs)				2PTZ-TDZ (C2V)			2PTZ-TAZ (C2)				
_	Energy (eV)	0.S.	фs	∆r (Å)	Energy (eV)	0.S.	фs	∆r (Å)	Energy (eV)	0.S.	фs	∆r (Å)
T ₁	2.8207	-	0.25	1.73	2.5909	-	0.17	0.71	3.165	-	0.64	0.46
S ₁	2.8376	0.002	0.18	1.78	2.6	0	0.15	0.72	3.2663	0	0.22	0.93
ΔE _{st}	0.0169				0.0091				0.1013			

Table S3: S_1 and T_1 excitations energies and their associated singlet-triplet energy gap (ΔE_{ST}) for the equatorial conformer as well as the attachment and detachment densities overlap and distance difference between attachment and detachment densities centroids of the different compounds calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene). Oscillator strengths (O.S.) for S_1 electronic transitions as well as the symmetry point group of the ground state optimized geometries (in parenthesis next to the molecule names) are also reported.

	PXZ-OXD	(Cs)	PXZ-TDZ (C	s)	PXZ-TAZ (C1)		
	Energy (eV)	O.S.	Energy (eV)	O.S .	Energy (eV)	0.S.	
T ₁	2.6347	-	2.437	-	3	-	
S ₁	2.6465	0	2.4453	0	3.02	0.0112	
∆E st	0.0118		0.0083		0.02		

	PTZ-OXD (Cs)	PTZ-TDZ (C	s)	PTZ-TAZ (C1)		
	Energy (eV)	O.S.	Energy (eV)	0.S.	Energy (eV)	O.S.	
T ₁	2.8528	-	2.6647	-	3.05	-	
S_1	2.872	0	2.676	0	3.3	0.0019	
ΔE^{ST}	0.0192		0.0113		0.25		

	2PXZ-OXD (C2V)	2PXZ-TDZ (C	2V)	2PXZ-TAZ (C2)		
	Energy (eV)	O.S.	Energy (eV)	0.S.	Energy (eV)	O.S.	
T_1	2.4985	-	2.2874	-	2.949	-	
S ₁	2.5081	0	2.2944	0	2.9644	0	
ΔEst	0.0096		0.007		0.0154		

	2PTZ-OXD	(Cs)	2PTZ-TDZ (C	2V)	2PTZ-TAZ (C2)		
	Energy (eV)	O.S.	Energy (eV)	O.S.	Energy (eV)	O.S.	
T_1	2.7885	-	2.5634	-	3.0473	-	
S_1	2.8038	0.0025	2.572	0	3.225	0	
ΔE _{st}	0.0153		0.0086		0.1777		

Table S4: S_1 and T_1 excitations and their associated singlet-triplet energy gap (ΔE_{ST}) for the equatorial conformer of the different compounds calculated at the TDA-PBE0-D3(BJ)/def2TZVP level of theory with the PCM module for solvent (toluene). Oscillator strengths (O.S.) for S_1 electronic transitions as well as the symmetry point group of the ground state optimized geometries (in parenthesis next to the molecule names) are also reported.

	PXZ-OXD (0	C1)	PXZ-TDZ (C	21)	PXZ-TAZ (C1)		
	Energy (eV)	O.S.	Energy (eV)	O.S.	Energy (eV)	O.S.	
T ₁	2.878	-	2.607	-	3.237	-	
S ₁	3.598	1.156	3.299	1.204	3.867	0.834	
ΔE ST	0.720		0.693		0.630		

	PTZ-OXD (0	C1)	PTZ-TDZ (C	21)	PTZ-TAZ (C1)		
	Energy (eV)	O.S.	Energy (eV)	O.S.	Energy (eV)	O.S.	
T_1	2.871	-	2.610	-	3.225	-	
S_1	3.604	1.186	3.334	1.242	3.842	0.908	
ΔE _{st}	0.733		0.724		0.617		

	2PXZ-OXD (Cs)		2PXZ-TDZ (Cs)	2PXZ-TAZ (C1)	
	Energy (eV)	O.S.	Energy (eV)	O.S.	Energy (eV)	O.S.
T_1	2.799	-	2.543	-	3.158	-
S_1	3.470	1.730	3.211	1.807	3.750	1.439
ΔEst	0.671		0.668		0.592	

	2PTZ-OXD (Cs)		2PTZ-TDZ (Cs)		2PTZ-TAZ (C1)	
	Energy (eV)	O.S.	Energy (eV)	O.S.	Energy (eV)	O.S.
T ₁	2.811	-	2.529	-	3.142	-
S1	3.505	1.691	3.207	1.410	3.716	1.947
ΔEst	0.693		0.678		0.574	

Table S5: S_1 and T_1 excitations and their associated singlet-triplet energy gap (ΔE_{ST}) for the axial conformer of the different compounds calculated at the TDA-PBE0-D3(BJ)/def2TZVP level of theory with the PCM module for solvent (toluene). Oscillator strengths (O.S.) for S_1 electronic transitions as well as the symmetry point group of the ground state optimized geometries (in parenthesis next to the molecule names) are also reported.

	PXZ-OXD (Cs)		PXZ-TDZ (Cs)			PXZ-TAZ (C1)			
	S ₀	S ₁	T ₁	S ₀	S ₁	T ₁	S ₀	S_1	T ₁
Angle (°)	83.08	90.31	89.69	85.60	89.74	89.74	101.66	89.42	122.31

	PTZ-OXD (Cs)			PTZ-TI	OZ (Cs)		PT	Z-TAZ (C1)
	S ₀	S_1	T ₁	S ₀	S_1	T ₁	S ₀	S_1	T_1
Angle (°)	79.33	89.82	90.16	79.67	89.91	89.94	101.83	89.34	90.55

	2PXZ-OXD (C2V)		2PXZ-TDZ (C2V)			2PXZ-TAZ (C2)			
	S ₀	S ₁	T ₁	S ₀	S ₁	T ₁	S ₀	S_1	T ₁
Angle (°)	84.60	89.65	90.35	84.67	89.57	89.57	91.51	89.63	118.33

	2PTZ-OXD (Cs)		2PTZ-TDZ (C2V)			2PTZ-TAZ (C2)			
	S ₀	S ₁	T ₁	S ₀	S ₁	T ₁	S ₀	S ₁	T ₁
Angle (°)	81.18	88.38	89.54	79.37	88.56	88.51	80.75	88.23	88.02

Table S6: Equilibrium D-A torsion angles (in degrees) for ground state (S_0) and, singlet (S_1) and triplet (T_1) excited state (Tamm-Dancoff) optimization at PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene).

	PXZ-OXD	PXZ-TDZ	PXZ-TAZ	
State	% HONTO to LUNTO	% HONTO to LUNTO	% HONTO to LUNTO	
T ₁	99.9	99.9	99.3	
S_1	99.9	99.9	99.8	
T ₂	92.9	92.1	93.0	

	PTZ-OXD	PTZ-TDZ	PTZ-TAZ	
State	% HONTO to LUNTO	% HONTO to LUNTO	% HONTO to LUNTO	
T ₁	99.6	99.8	93.0	
S_1	99.9	99.9	99.8	
T ₂	88.4	92.0	96.3	

	2PXZ-OXD	2PXZ-TDZ	2PXZ-TAZ	
State	% HONTO to LUNTO	% HONTO to LUNTO	% HONTO to LUNTO	
T ₁	92.2	96.4	86.0	
T ₂	92.2	96.4	85.9	
S_1	92.6	96.6	87.0	
S ₂	92.6	96.6	87.1	
T ₃	46.9	91.9	47.0	
T_4	46.9	47.3	47.0	

	2PTZ-OXD	2PTZ-TDZ	2PTZ-TAZ	
State	% HONTO to LUNTO	% HONTO to LUNTO	% HONTO to LUNTO	
T ₁	92.1	96.5	69.7	
T ₂	92.1	96.5	69.6	
S_1	93.2	96.9	87.4	
S ₂	93.2	96.9	87.3	
T ₃	88.1	91.9	61.6	
T_4	45.5	45.5	61.7	

Table S7: Composition of the excited states transitions in terms of the HONTO to LUNTO transitions.