Supplementary Information for:

Competition and promotion of different mesophases in series of novel unsymmetrical discotic dimers via subtle modification of spacers and peripheral side chains

Xingtian Hao, Chunxiu Zhang,^{*} Jianchuang Wang, Wanying Zhang, Feng Hong, Shuaifeng Zhang, Ao Zhang, Huanzhi Yang, Zhenhu Zhang, Yifei Wang, Hao Wu, and Jialing Pu

Information Recording Materials Lab, Lab of Printing & Packaging Material and Technology, Beijing Institute of Graphic Communication, 102600 Beijing, China.

Table of Contents

- 1. Synthesis and characterization (page: 1-10)
- 2. ¹H-NMR and HRMS spectra (page: 11-38)
- 3. Mesomorphism (page: 39-50)

^{*} To whom correspondence should be addressed. Fax: +86-10-60261108; Tel: +86-10-60261110; E-mail: zhangchunxiu@bigc.edu.cn

1. Synthesis and characterization

2-(6'-Bromohexyloxy)-3,6,7,10,11-Pentabutoxytriphenylene (1a)

1.36g (49.98mmol) 1,6-dibromohexane and 0.5g (7.41mmol) **HAT4** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1:1). Recrystallization from ethanol yields 0.3g (47%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max} /cm⁻¹ 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂CH₂Br), 1.7-1.6 (14H, m,OCH₂CH₂CH₂+OCH₂CH₂(CH₂)₂CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(7'-Bromoheptyloxy)-3,6,7,10,11-Pentabutoxytriphenylene (1b)

1.44g (49.98mmol) 1,7-dibromoheptane and 0.5g (7.41mmol) **HAT4** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1:1). Recrystallization from ethanol yields 0.3g (46%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1254 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.6 (16H, m,OCH₂CH₂CH₂+OCH₂CH₂(CH₂)₃CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(8'-Bromooctyloxy)-3,6,7,10,11-Pentabutoxytriphenylene (1c)

1.52g (49.98mmol) 1,8-dibromooctane and 0.5g(7.41mmol) **HAT4** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1:1). Recrystallization from ethanol yields 0.3g (45.5%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1256 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂CH₂Br), 1.7-1.5 (18H, m,OCH₂CH₂CH₂+OCH₂CH₂(CH₂)₄CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(9'-Bromononyloxy)-3,6,7,10,11-Pentabutoxytriphenylene (1d)

1.6g (49.98mmol) 1,9-dibromononane and 0.5g(7.41mmol) **HAT4** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent

CH₂Cl₂/PE=1:1). Recrystallization from ethanol yields 0.4g (60%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.5 (20H, m,OCH₂CH₂+OCH₂CH₂(CH₂)₅CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(10'-Bromodecyloxy)-3,6,7,10,11-Pentabutoxytriphenylene (1e)

1.67g (49.98mmol) 1,10-dibromodecane and 0.5g(7.41mmol) **HAT4** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography.(silica gel eluent CH₂Cl₂/PE=1:1). Recrystallization from ethanol yields 0.4g (58.8%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1253 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.5 (22H, m,OCH₂CH₂+OCH₂CH₂CH₂(CH₂)₆CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(11'-Bromoundecyloxy)-3,6,7,10,11-Pentabutoxytriphenylene (1f)

1.75g (49.98mmol) 1,11-dibromoundecane and 0.5g (7.41mmol) **HAT4** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1:1). Recrystallization from ethanol yields 0.35g (51%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max} /cm⁻¹ 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂CH₂Br), 1.7-1.5 (24H, m,OCH₂CH₂CH₂+OCH₂CH₂(CH₂)₇CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(12'-Bromododecyloxy)-3,6,7,10,11-Pentabutoxytriphenylene (1g)

1.83g (49.98mmol) 1,12-dibromododecane and 0.5g (7.41mmol) **HAT4** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography.(silica gel eluent CH₂Cl₂/PE=1:1). Recrystallization from ethanol yields 0.4g (57%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1252 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Er), 1.7-1.5 (26H, m,OCH₂CH₂CH₂+OCH₂CH₂(CH₂)₈CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(6'-Bromohexyloxy)-3,6,7,10,11-Pentapentyloxytriphenylene (2a)

1.22g (49.98mmol) 1,6-dibromohexane and 0.5g(7.41mmol) **HAT5** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography.(silica gel eluent CH₂Cl₂/PE=1;1). Recrystallization from ethanol yields 0.3g (48%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂CH₂Br), 1.7-1.5 (24H, m, OCH₂CH₂(CH₂)₂+OCH₂CH₂(CH₂)₂CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(7'-Bromoheptyloxy)-3,6,7,10,11-Pentapentyloxytriphenylene (2b)

1.29g (49.98mmol) 1,7-dibromoheptane and 0.5g(7.41mmol) **HAT5** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography.(silica gel eluent CH₂Cl₂/PE=1;1). Recrystallization from ethanol yields 0.28g (44%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.5 (26H, m, OCH₂CH₂(CH₂)₂+OCH₂CH₂(CH₂)₃CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(8'-Bromooctyloxy)-3,6,7,10,11-Pentapentyloxytriphenylene (2c)

1.36g (49.98mmol) 1,8-dibromooctane and 0.5g(7.41mmol) **HAT5** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1;1). Recrystallization from ethanol yields 0.3g (47%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.5 (28H, m, OCH₂CH₂(CH₂)₂+OCH₂CH₂(CH₂)₄CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(9'-Bromononyloxy)-3,6,7,10,11-Pentapentyloxytriphenylene (2d)

1.43g (49.98mmol) 1,9-dibromononane and 0.5g (7.41mmol) **HAT5** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1;1). Recrystallization from ethanol yields 0.3g (46%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1254 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.5 (30H, m, OCH₂CH₂(CH₂)₂+OCH₂CH₂(CH₂)₅CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(10'-Bromodecyloxy)-3,6,7,10,11-Pentapentyloxytriphenylene (2e)

1.5g (49.98mmol) 1,10-dibromodecane and 0.5g (7.41mmol) **HAT5** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1;1). Recrystallization from ethanol yields 0.3g (45%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.5 (32H, m, OCH₂CH₂(CH₂)₂+OCH₂CH₂(CH₂)₆CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(11'-Bromoundecyloxy)-3,6,7,10,11-Pentapentyloxytriphenylene (2f)

1.57g (49.98mmol) 1,11-dibromoundecane and 0.5g (7.41mmol) **HAT5** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1;1). Recrystallization from ethanol yields 0.32g (47%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max} /cm⁻¹ 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.5 (34H, m, OCH₂CH₂(CH₂)₂+OCH₂CH₂(CH₂)₇CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

2-(12'-Bromododecyloxy)-3,6,7,10,11-Pentapentyloxytriphenylene (2g)

1.64g (49.98mmol) 1,12-dibromododecane and 0.5g (7.41mmol) **HAT5** are dissolved in 12ml acetone and stirred for 15h after addition of 0.6g (43.31mmol) potassium carbonate. After filtering and washing with dichloromethane the mixture is subjected to chromatography. (silica gel eluent CH₂Cl₂/PE=1;1). Recrystallization from ethanol yields 0.35g (51%) pure product as a white soild. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); IR (KBr): v_{max}/cm^{-1} 1255 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (6H, s, ArH), 4.4-4.2 (12H, t, OCH₂), 3.5 (2H, t, CH₂Br), 2.1-1.90 (14H, m, OCH₂CH₂+CH₂CH₂Br), 1.7-1.5 (36H, m, OCH₂CH₂(CH₂)₂+OCH₂CH₂(CH₂)₈CH₂CH₂Br), 1.2-1.0 (15H, t, CH₃).

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-6-(3,6,7,10,11-pentabutoxytriphenylen-2-yloxy)-hexane (T_{3,4}D₆)

0.35g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **1a** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.16g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: $CH_2Cl_2:PE=1:1$) and subsequent recrystallization from acetone yields 0.24 (30.2%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 75.7; H 8.58. $C_{77}H_{104}O_{12}$ requires: C, 75.8; H, 8.59%); IR (KBr): v_{max}/cm^{-1} 1263 (C-O-C); δ_H (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (14H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₂CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1220.7522

(C₇₇H₁₀₄O₁₂), found m/z 1220.7518 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-7-(3,6,7,10,11-pentabutoxytriphenylen-2-yloxy)-heptane (T_{3,4}D₇)

0.34g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **1b** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.14g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.25g (31.6%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 75.8; H 8.66. C₇₈H₁₀₆O₁₂ requires: C, 75.9; H, 8.65%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (16H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₃CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1234.7679 (C₇₈H₁₀₆O₁₂), found m/z 1234.7679 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-8-(3,6,7,10,11-pentabutoxytriphenylen-2-yloxy)-octane (T_{3,4}D₈)

0.33g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **1c** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.12g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.25 (31.8%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 75.96; H 8.72. C₇₉H₁₀₈O₁₂ requires: C, 75.98; H, 8.71%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (18H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₄CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1248.7834 (C₇₉H₁₀₈O₁₂), found m/z 1248.7835 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-9-(3,6,7,10,11-pentabutoxytriphenylen-2-yloxy)-nonane (T_{3,4}D₉)

0.327g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **1d** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.1g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.25g (32%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 75.9; H 8.76. C₈₀H₁₁₀O₁₂ requires: C, 76.1; H, 8.78%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂CH₂), 1.7-1.35 (20H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₅CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1262.7990 (C₈₀H₁₁₀O₁₂), found m/z 1262.7992 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-10-(3,6,7,10,11-pentabutoxytriphenylen-2-yloxy)-decane (T_{3,4}D₁₀)

0.32g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **1e** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.08g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: $CH_2Cl_2:PE=1:1$) and subsequent recrystallization from acetone yields 0.26 (34%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 76.1; H 8.84. C₈₁H₁₁₂O₁₂ requires: C, 76.2; H, 8.84%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_H (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (22H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₆CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1276.8145

 $(C_{81}H_{112}O_{12})$, found m/z 1276.8148 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-11-(3,6,7,10,11-pentabutoxytriphenylen-2-yloxy)-undecane (T_{3,4}D₁₁)

0.316g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **1f** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.07g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.26 (33.7%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 76.1; H 8.87. C₈₂H₁₁₄O₁₂ requires: C, 76.3; H, 8.9%); IR (KBr): ν_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (24H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₇CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1290.8304 (C₈₂H₁₁₄O₁₂), found m/z 1290.8305 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-12-(3,6,7,10,11-pentabutoxytriphenylen-2-yloxy)-dodecane (T_{3,4}D₁₂)

0.31g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **1g** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.05g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: $CH_2Cl_2:PE=1:1$) and subsequent recrystallization from acetone yields 0.25 (32.6%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 76.3; H 8.94. C₈₃H₁₁₆O₁₂ requires: C, 76.4; H, 8.96%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_H (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (26H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₈CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1304.8461 (C₈₃H₁₁₆O₁₂), found m/z 1304.8461 (M)⁺

1-(3,6,7,10,11-pentabutoxytriphenylene-2-yloxy)-6-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-hexane (T_{4,5}D₆)

0.358g (2.22mmol) **HAT4** and 0.5g (2.24mmol) **2a** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.07g (28.94mmol) potassium carbonate

and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.31g (38%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 76.75; H 9.17. $C_{87}H_{124}O_{12}$ requires: C, 76.78; H, 9.18%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (34H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₂CH₂CH₂O+OCH₂CH₂(CH₂)₂), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1360.9088 (C₈₇H₁₂₄O₁₂), found m/z 1360.9087 (M)⁺

1-(3,6,7,10,11-pentabutoxytriphenylene-2-yloxy)-7-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-heptane (T_{4,5}D₇)

0.35g (2.22mmol) **HAT4** and 0.5g (2.24mmol) **2b** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.05g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.36g (45%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 76.84; H 9.22 C₈₈H₁₂₆O₁₂ requires: C, 76.87; H, 9.24%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (36H, m, OCH₂CH₂CH₂+OCH₂CH₂(CH₂)₃CH₂CH₂O+OCH₂CH₂(CH₂)₂), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1374.9247 (C₈₈H₁₂₆O₁₂), found m/z 1374.9244 (M)⁺

1-(3,6,7,10,11-pentabutoxytriphenylene-2-yloxy)-8-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-octane (T_{4,5}D₈)

0.35g (2.22mmol) **HAT4** and 0.5g (2.24mmol) **2c** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.03g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.36g (45%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 76.94; H 9.27. C₈₉H₁₂₈O₁₂ requires: C, 76.96; H, 9.29%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (38H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₄CH₂CH₂O+OCH₂CH₂(CH₂)₂), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1388.9403 (C₈₉H₁₂₈O₁₂), found m/z 1388.9400 (M)⁺

1-(3,6,7,10,11-pentabutoxytriphenylene-2-yloxy)-9-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-nonane (T_{4,5}D₉)

0.34g (2.22mmol) **HAT4** and 0.5g (2.24mmol) **2d** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.01g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.36g (45%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 76.8; H 9.3. C₉₀H₁₃₀O₁₂ requires: C, 77.1; H, 9.34%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (40H, m, OCH₂CH₂CH₂+OCH₂CH₂(CH₂)₅CH₂CH₂O+OCH₂CH₂(CH₂)₂), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1402.9562 (C₉₀H₁₃₀O₁₂), found m/z 1402.9557 (M)⁺

1-(3,6,7,10,11-pentabutoxytriphenylene-2-yloxy)-10-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-decane (T_{4,5}D₁₀)

0.34g (2.22mmol) **HAT4** and 0.5g (2.24mmol) **2e** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 0.998g (28.94mmol) potassium carbonate

and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.36g (45%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 77.05; H 9.32. C₉₁H₁₃₂O₁₂ requires: C, 77.14; H, 9.39%); IR (KBr): ν_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (42H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₆CH₂CH₂O+OCH₂CH₂(CH₂)₂), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1416.9713 (C₉₁H₁₃₂O₁₂), found m/z 1416.9713 (M)⁺

1-(3,6,7,10,11-pentabutoxytriphenylene-2-yloxy)-11-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-undecane (T_{4,5}D₁₁)

0.33g (2.22mmol) **HAT4** and 0.5g (2.24mmol) **2f** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 0.98g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.35g (45%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 77.13; H 9.35. C₉₂H₁₃₄O₁₂ requires: C, 77.22; H, 9.44%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (44H, m, OCH₂CH₂CH₂+ OCH₂CH₂(CH₂)₇CH₂CH₂O+OCH₂CH₂(CH₂)₂), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1430.9877 (C₉₂H₁₃₄O₁₂), found m/z 1430.9870 (M)⁺

1-(3,6,7,10,11-pentabutoxytriphenylene-2-yloxy)-12-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-dodecane (T_{4,5}D₁₂)

0.33g (2.22mmol) **HAT4** and 0.5g (2.24mmol) **2g** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 0.97g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent:CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.35g (45%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (found: C 77.1; H 9.43. C₉₃H₁₃₆O₁₂ requires: C, 77.3; H, 9.49%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (46H, m, OCH₂CH₂CH₂CH₂+ OCH₂CH₂(CH₂)₈CH₂CH₂O+OCH₂CH₂(CH₂)₂), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1445.0021 (C₉₃H₁₃₆O₁₂), found m/z 1445.0027 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-6-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-hexane (T_{3,5}D₆)

0.32g (2.22mmol) HAT3 and 0.5g (2.24mmol) 2a are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.07g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.25g (32%) of the dimer as a white solid. TLC Rf: 0.6 (dichloromethane-light petroleum 1:1); Found: C, 76.17; H, 8.94. C₈₂H₁₁₄O₁₂ requires: C, 76.24; H, 8.90%); IR (KBr): ν_{max}/cm⁻¹ 1263 (C-O-C); δ_H (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, OCH₂), 2.1-1.90 (24H, m. OCH₂CH₂), 1.7-1.35 t. (24H, m. OCH₂CH₂CH₂CH₂+OCH₂CH₂(CH₂)₂CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1290.8307 (C₈₂H₁₁₄O₁₂), found m/z 1290.8305 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-7-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-heptane (T_{3,5}D₇)

0.31g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **2b** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.05g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.3g (39%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (Found: C, 76.26; H, 9.02. C₈₃H₁₁₆O₁₂ requires: C, 76.34; H, 8.95%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (26H, m, OCH₂CH₂CH₂CH₂+OCH₂CH₂(CH₂)₃CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1304.8462 (C₈₃H₁₁₆O₁₂), found m/z 1304.8461 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-8-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-octane (T_{3,5}D₈)

0.31g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **2c** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.03g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.3g (39%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (Found: C, 76.38; H, 8.95. C₈₄H₁₁₈O₁₂ requires: C, 76.44; H, 9.01%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (28H, m, OCH₂CH₂CH₂CH₂+OCH₂CH₂(CH₂)₄CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1318.8608 (C₈₄H₁₁₈O₁₂), found m/z 1318.8618 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-9-(3,6,7,10,11-pentapentyloxytriphenylen-2-yloxy)-nonane (T_{3,5}D₉)

0.3g (2.22mmol) HAT3 and 0.5g (2.24mmol) 2d are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 1.01g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.3g (40%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (Found: C, 76.57; H, 9.0. C₈₅H₁₂₀O₁₂ requires: C, 76.54; H, 9.07%); IR (KBr): v_{max}/cm⁻¹ 1263 (C-O-C); $\delta_{\rm H}$ (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t. OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (30H, m, OCH₂CH₂CH₂CH₂+OCH₂CH₂(CH₂)₅CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1332.8750 (C₈₅H₁₂₀O₁₂), found m/z 1332.8774 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-10-(3,6,7,10,11-

pentapentyloxytriphenylen-2-yloxy)-decane (T_{3,5}D₁₀)

0.3g (2.22mmol) HAT3 and 0.5g (2.24mmol) 2e are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 0.998g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.26g (35%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (Found: C, 76.52; H, 9.09. C86H122O12 requires: C, 76.63; H, 9.12%); IR (KBr): ν_{max}/cm⁻¹ 1263 (C-O-C); δ_H (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, OCH₂), 2.1-1.90 (24H, m. OCH₂CH₂), 1.7-1.35 t. (32H, m. OCH₂CH₂CH₂CH₂+OCH₂CH₂(CH₂)₆CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1346.8938 (C₈₆H₁₂₂O₁₂), found m/z 1346.8931 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-11-(3,6,7,10,11-

pentapentyloxytriphenylen-2-yloxy)-undecane (T_{3,5}D₁₁)

0.29g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **2f** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 0.98g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: $CH_2Cl_2:PE=1:1$) and subsequent recrystallization from acetone yields 0.26g (35%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (Found: C, 76.55; H, 9.15. $C_{87}H_{124}O_{12}$ requires: C, 76.73; H, 9.18%); IR (KBr): v_{max}/cm^{-1} 1263 (C-O-C); δ_H (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (34H, m, OCH₂CH₂CH₂CH₂CH₂+OCH₂CH₂(CH₂)₇CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1360.9083 ($C_{87}H_{124}O_{12}$), found m/z 1360.9087 (M)⁺

1-(3,6,7,10,11-pentapropoxytriphenylene-2-yloxy)-12-(3,6,7,10,11-

pentapentyloxytriphenylen-2-yloxy)-dodecane (T_{3,5}D₁₂)

0.29g (2.22mmol) **HAT3** and 0.5g (2.24mmol) **2g** are dissolved in 15ml acetone under nitrogen. The mixture is refluxed for twenty hours after addition of 0.97g (28.94mmol) potassium carbonate and potassium iodide (50mg). Filtering and chromatography (eluent: CH₂Cl₂:PE=1:1) and subsequent recrystallization from acetone yields 0.26g (35%) of the dimer as a white solid. TLC R_f: 0.6 (dichloromethane-light petroleum 1:1); (Found: C, 76.54; H, 9.10. C₈₈H₁₂₆O₁₂ requires: C, 76.82; H, 9.23%); IR (KBr): v_{max} /cm⁻¹ 1263 (C-O-C); δ_{H} (300MHZ, CDCl₃) 8-7.8 (12H, s, ArH), 4.4-4.2 (24H, t, OCH₂), 2.1-1.90 (24H, m, OCH₂CH₂), 1.7-1.35 (36H, m, OCH₂CH₂CH₂CH₂+OCH₂CH₂(CH₂)₈CH₂CH₂O), 1.2-1.0 (30H, t, CH₃), HRMS (ESI): calc.m/z 1374.9247 (C₈₈H₁₂₆O₁₂), found m/z 1374.9244 (M)⁺

2 ¹H-NMR and HRMS spectra

Fig.S15 ¹HNMR spectra of T_{3,4}D₆

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
346	C ₇₇ H ₁₀₄ O ₁₂	[M]+	1220.7518	1220.7522	-0.3277

Fig.S16 HRMS spectra of T_{3,4}D₆

Fig.S17 ¹HNMR spectra of T_{3,4}D₇

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
347	C ₇₈ H ₁₀₆ O ₁₂	[M]+	1234.7679	1234.7679	0.0000

Fig.S18 HRMS spectra of T_{3,4}D₇

Fig.S19 ¹HNMR spectra of T_{3,4}D₈

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
348	C ₇₉ H ₁₀₈ O ₁₂	[M]+	1248.7835	1248.7834	0.0801

Fig.S20 HRMS spectra of T_{3,4}D₈

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
349	C ₈₀ H ₁₁₀ O ₁₂	[M]+	1262.7992	1262.7990	0.1584

Fig.S22 HRMS spectra of T_{3,4}D₉

Fig.S23 ¹HNMR spectra of T_{3,4}D₁₀

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
3410	C ₈₁ H ₁₁₂ O ₁₂	[M]+	1276.8148	1276.8145	0.2350

Fig.S24 HRMS spectra of T_{3,4}D₁₀

Fig.S25 ¹HNMR spectra of T_{3,4}D₁₁

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
3411	C ₈₂ H ₁₁₄ O ₁₂	[M]+	1290.8305	1290.8304	0.0775

Fig.S26 HRMS spectra of T_{3,4}D₁₁

Fig.S27 ¹HNMR spectra of T_{3,4}D₁₂

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
3412	C ₈₃ H ₁₁₆ O ₁₂	[M]+	1304.8461	1304.8461	0.0000

Fig.S28 HRMS spectra of T_{3,4}D₁₂

Fig.S29 ¹HNMR spectra of T_{4,5}D₆

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
456	C ₈₇ H ₁₂₄ O ₁₂	[M]+	1360.9087	1360.9088	-0.0735

Fig.S30 HRMS spectra of T_{4,5}D₆

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
457	C ₈₈ H ₁₂₆ O ₁₂	[M]+	1374.9244	1374.9247	-0.2182

Fig.S33 ¹HNMR spectra of T_{4,5}D₈

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
458	C ₈₉ H ₁₂₈ O ₁₂	[M]+	1388.9400	1388.9403	-0.2160

Fig.S34 HRMS spectra of T_{4,5}D₈

Fig.S35 ¹HNMR spectra of T_{4,5}D₉

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
459	C ₉₀ H ₁₃₀ O ₁₂	[M]+	1402.9557	1402.9562	-0.3564

Fig.S36 HRMS spectra of T_{4,5}D₉

Fig.S37 ¹HNMR spectra of T_{4,5}D₁₀

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
4510	C ₉₁ H ₁₃₂ O ₁₂	[M]+	1416.9713	1416.9713	0.0000

Fig. S39 ¹HNMR spectra of T_{4,5}D₁₁

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
4511	C ₉₂ H ₁₃₄ O ₁₂	[M]+	1430.9870	1430.9877	-0.4892

Fig.S40 HRMS spectra of T_{4,5}D₁₁

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
4512	C ₉₃ H ₁₃₆ O ₁₂	[M]+	1445.0027	1445.0021	0.4152

Fig.S42 HRMS spectra of T_{4,5}D₁₂

Fig.S43 ¹HNMR spectra of T_{3,5}D₆

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
356	C ₈₂ H ₁₁₄ O ₁₂	[M]+	1290.8305	1290.8307	-0.1549

Fig.S44 HRMS spectra of T_{3,5}D₆

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
357	C ₈₃ H ₁₁₆ O ₁₂	[M]+	1304.8461	1304.8462	-0.0766

Fig.S46 HRMS spectra of T_{3,5}D₇

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
358	C ₈₄ H ₁₁₈ O ₁₂	[M]+	1318.8618	1318.8608	0.7582

Fig.S48 HRMS spectra of T_{3,5}D₈

Fig.S49 ¹HNMR spectra of T_{3,5}D₉

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
359	C ₈₅ H ₁₂₀ O ₁₂	[M]+	1332.8774	1332.8750	1.8006

Fig.S50 HRMS spectra of T_{3,5}D₉

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
3510	C ₈₆ H ₁₂₂ O ₁₂	[M]+	1346.8931	1346.8938	-0.5197

Fig.S52 HRMS spectra of T_{3,5}D₁₀

Fig.S53 ¹HNMR spectra of T_{3,5}D₁₁

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
3511	C ₈₇ H ₁₂₄ O ₁₂	[M]+	1360.9087	1360.9083	0.2939

Fig.S54 HRMS spectra of T_{3,5}D₁₁

Fig.S55 ¹HNMR spectra of T_{3,5}D₁₂

Sample No.	Formula (M)	Ion Formula	Measured	Calc m/z	Diff (ppm)
			m/z		
3512	C ₈₈ H ₁₂₆ O ₁₂	[M]+	1374.9244	1374.9247	-0.2182

Fig.S56 HRMS spectra of T_{3,5}D₁₂

Mesomorphism

1. POM and DSC

Mesomorphism of T_{3,4}D₆

Fig.S57 DSC trace of compound $T_{3,4}D_6$ run at 10°Cmin⁻¹ under N².

Mesomorphism of T_{3,4}D₇

Fig.S58 DSC trace of compound $T_{3,4}D_7$ run at 10°Cmin⁻¹ under N².

Fig.S59 Mosaic texture observed by POM with of compound $T_{3,4}D_8$ sandwiched between clean glass slides on cooling from isotropic phase at 30°C(left); DSC trace of compound $T_{3,4}D_8$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,4}D₉

Fig.S60 Mosaic texture observed by POM with of compound $T_{3,4}D_9$ sandwiched between clean glass slides on cooling from isotropic phase at 30°C(left); DSC trace of compound $T_{3,4}D_9$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,4}D₁₀

Fig.S61 Mosaic texture observed by POM with of compound $T_{3,4}D_{10}$ sandwiched between clean glass slides on cooling from isotropic phase at 146°C(left); DSC trace of compound $T_{3,4}D_{10}$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,4}D₁₁

Fig.S62 Fan-shaped texture observed by POM with of compound $T_{3,4}D_{11}$ sandwiched between clean glass slides on cooling from isotropic phase at 25°C(left); DSC trace of compound $T_{3,4}D_{11}$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of $T_{3,4}D_{12}$

Fig.S63 Fan-shaped texture observed by POM with of compound $T_{3,4}D_{12}$ sandwiched between clean glass slides on cooling from isotropic phase at 30°C(left); DSC trace of compound $T_{3,4}D_{12}$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{4,5}D₆

Fig.S64 Fan-shaped texture observed by POM of compound $T_{4,5}D_6$ sandwiched between clean glass slides on cooling from isotropic phase at 100°C(left); DSC trace of compound $T_{4,5}D_6$ run at 10°Cmin⁻¹ under N²(right).

Fig.S65 Fan-shaped texture observed by POM of compound $T_{4,5}D_7$ sandwiched between clean glass slides on cooling from isotropic phase at 90°C(left); DSC trace of compound $T_{4,5}D_7$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{4,5}D₈

Fig.S66 Fan-shaped texture observed by POM of compound $T_{4,5}D_8$ sandwiched between clean glass slides on cooling from isotropic phase at 30°C(left); DSC trace of compound $T_{4,5}D_8$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{4,5}D₉

Fig.S67 Fan-shaped texture observed by POM of compound $T_{4,5}D_9$ sandwiched between clean glass slides on cooling from isotropic phase at 110°C(left); DSC trace of compound $T_{4,5}D_9$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{4,5}D₁₀

Fig.S68 Fan-shaped texture observed by POM of compound $T_{4,5}D_{10}$ sandwiched between clean glass slides on cooling from isotropic phase at 25°C(left); DSC trace of compound $T_{4,5}D_{10}$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{4,5}D₁₁

Fig.S69 DSC trace of compound $T_{4,5}D_{11}$ run at 10°Cmin⁻¹ under N². Mesomorphism of $T_{4,5}D_{12}$

Fig.S70 Fan-shaped texture observed by POM of compound $T_{4,5}D_{12}$ sandwiched between clean glass slides on cooling from isotropic phase at 30°C(left); DSC trace of compound $T_{4,5}D_{12}$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,5}D₆

Fig.S71 Fan-shaped texture observed by POM of compound $T_{3,5}D_6$ sandwiched between clean glass slides on cooling from isotropic phase at 40°C(left); DSC trace of compound $T_{3,5}D_6$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,5}D₇

Fig.S72 DSC trace of compound $T_{3,5}D_7$ run at 10°Cmin⁻¹ under N². Mesomorphism of $T_{3,5}D_8$

Fig.S73 Fan-shaped texture observed by POM of compound $T_{3,5}D_8$ sandwiched between clean glass slides on cooling from isotropic phase at 40°C(left); DSC trace of compound $T_{3,5}D_8$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,5}D₉

Fig.S74 Dendritic texture observed by POM of compound $T_{3,5}D_9$ sandwiched between clean glass slides on cooling from isotropic phase at 128°C(left); DSC trace of compound $T_{3,5}D_9$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,5}D₁₀

Fig.S75 Dendritic texture observed by POM of compound $T_{3,5}D_{10}$ sandwiched between clean glass slides on cooling from isotropic phase at 122°C(left); DSC trace of compound $T_{3,5}D_{10}$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,5}D₁₁

Fig.S76 Dendritic texture observed by POM of compound $T_{3,5}D_{11}$ sandwiched between clean glass slides on cooling from isotropic phase at 35°C(left); DSC trace of compound $T_{3,5}D_{11}$ run at 10°Cmin⁻¹ under N²(right).

Mesomorphism of T_{3,5}D₁₂

Fig.S77 Dendritic texture observed by POM of compound $T_{3,5}D_{12}$ sandwiched between clean glass slides on cooling from isotropic phase at 36°C(left); DSC trace of compound $T_{3,5}D_{12}$ run at 10°Cmin⁻¹ under N²(right).

2. 1D WAXD

Fig.S78 (a) 1D WAXD of $T_{3,4}D_{11}$ at 130°C and 40°C during the first cooling runs; (b) 1D WAXD of $T_{3,4}D_6$ at 130°C and 40°C during the first cooling runs.

Fig.S79 (a) 1D WAXD of $T_{3,4}D_7$ at 90°C (red line) and $T_{3,4}D_8$ at 95°C (black line) during the first heating runs; (b) 1D WAXD of $T_{3,4}D_9$ at 95°C (red line) and $T_{3,4}D_{10}$ at 90°C (black line) during the first heating runs.

Fig.S80 (a) 1D WAXD of $T_{4,5}D_6$ at 90°C (red line) and $T_{4,5}D_7$ at 100°C (black line) during the first heating runs; (b) 1D WAXD of $T_{4,5}D_{11}$ at 90°C (red line) and $T_{4,5}D_{12}$ at 80°C (black line) during the first heating runs.

Fig.S81 (a) 1D WAXD of $T_{4,5}D_8$ at 105°C and 115°C during the first heating runs; (b) 1D WAXD of $T_{4,5}D_{10}$ at 90°C and 120°C during the first heating runs.

Fig.S82 1D WAXD of $T_{3,5}D_m$ (m=6-12) at 90°C during the first heating runs.

3. 2D WAXD

Fig.S83 2D WAXD of T_{3,5}D₆ at 25°C

Fig.S84 2D WAXD of $T_{3,5}D_7$ at 25°C (polydomain)

Fig.S85 2D WAXD of $T_{3,5}D_8$ at 25°C

Fig.S86 2D WAXD of $T_{3,5}D_9$ at 25°C

Fig.S87 2D WAXD of $T_{3,5}D_{10}$ at $25^\circ C$

Fig.S88 2D WAXD of $T_{3,5}D_{11}$ at $25^\circ C$

Fig.S89 2D WAXD of $T_{3,5}D_{12}$ at 25°C

Fig.S90 2D WAXD of T_{3,4}D₇ at 25°C