Supporting Information

A simple maskless process for fabrication of vertically aligned high density hematite and graphene/magnetite nanowires

Seungmin Shin, † Sung-Wook Kim, ‡ Ji-Hyun Jang*,‡ and Jin-Baek Kim*,†

†Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST),

291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

‡School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center,

Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

*E-mail: jbkim21@kaist.ac.kr and clau@unist.ac.kr

FeCl₃ + 3
$$\xrightarrow{0}$$
 $\xrightarrow{Na^+}$ $\xrightarrow{H_2O}$ \xrightarrow{Fe} + 3NaCl

Figure S1. The synthetic scheme of iron(Ⅲ) methacrylate.

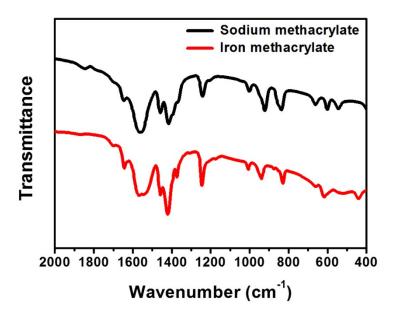
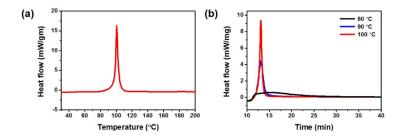
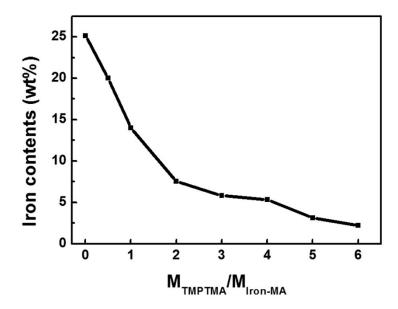




Figure S2. FTIR spectrum of sodium methacrylate and iron methacrylate.

Figure S3. The heat released during (a) nonisothermal and (b) isothermal crosslinking reaction of the formulated resin in DSC data.

Figure S4. Iron content versus the mass ratio of TMPTMA/iron methacrylate at a fixed mass ratio of MMA/iron methacrylate.

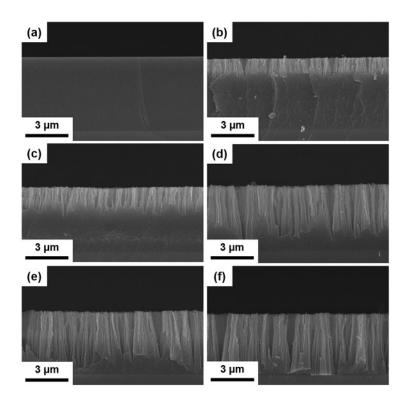
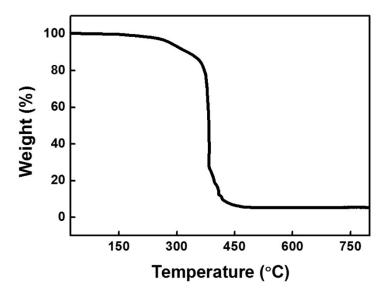
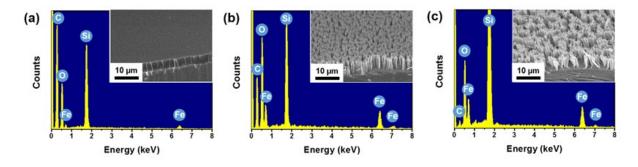
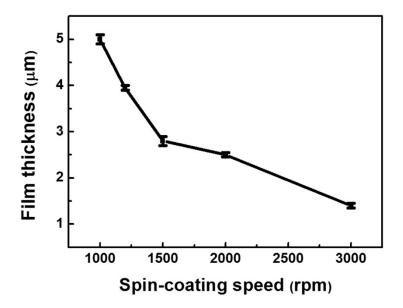




Figure S5. Cross-sectional SEM images of the oxygen plasma exposed film ($M_{\mbox{\scriptsize Iron-MA}}$:


 M_{TMPTMA} : M_{MMA} = 1:4:4) with different etching times. (a) 0 min, (b) 5 min, (c) 8 min, (d) 10 min, (e) 15 min and (f) 20 min.

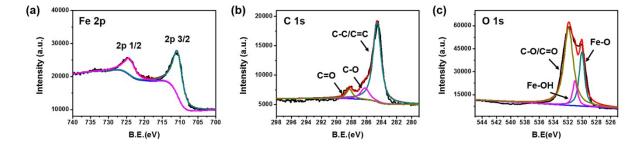
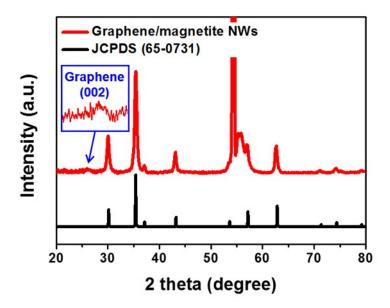
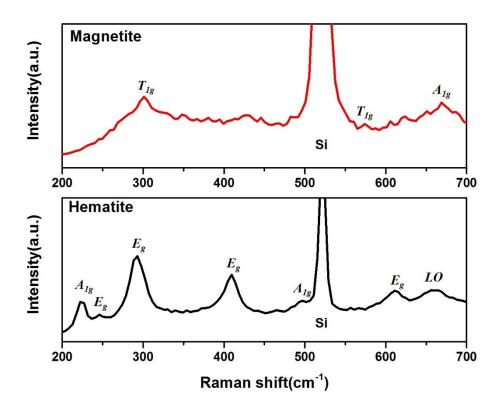

Figure S6. Thermal gravimetric analysis (TGA) of the cured composite resin. The organic portion decomposed in a temperature range of 300-430 °C, leaving behind about 5.4 % of the original mass.

Figure S7. EDS data obtained from (a) iron-containing polymer film after curing, (b) iron oxide/organic nanowires after oxygen plasma treatment and (c) hematite nanowires after calcination at 500 °C for 1 hr. (inset images : SEM images of each measured samples)

Figure S8. Control of film thickness by adjustment of spin coating speed for the 1:4:4 (M_{Iron} $M_{Iron} : M_{IMPTMA} : M_{MMA}$) composite resin.

Figure S9. XPS spectra of the graphene/magnetite nanowires after carbonization: (a) Fe 2p, (b) C 1s and (c) O 1s.

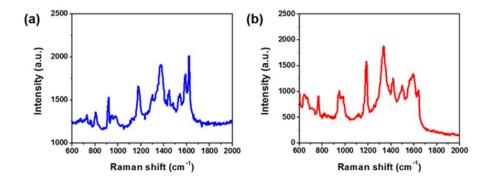

Figure S10. XRD data of the graphene/magnetite nanowires on Si substrate.

Figure S11. Cross-sectional SEM images and of nanowire arrays (a) before and (b) after carbonization at 700 °C for 30 min under H₂/Ar 50/50 sccm. Raman spectra of each obtained nanowires (c) before and (d) after carbonization, respectively.

Figure S12. Raman spectra of hematite nanowires calcined at 500 °C in air and graphene/magnetite nanowires calcined at 700 °C in H_2/Ar .

Figure S13. Raman spectra of (a) Crystal violet and (b) fluorescein dye on graphene/magnetite nanowires.

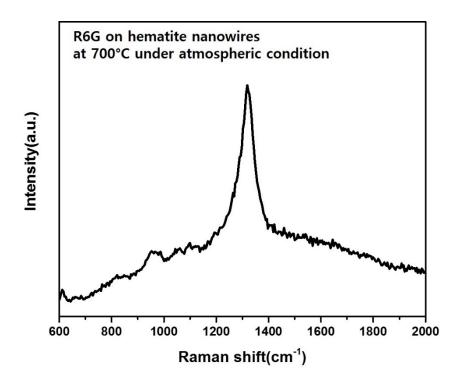


Figure S14. Raman spectra of R6G on hematite nanowires calcined at 700 °C in air

Table S1. Comparison study of multilayered-graphene/magnetite nanowires in this work and previously reported GERS substrates.

GERS substrate	Probe molecules	Enhancement factor	Reference substrate	Reference
Graphene monolayer	Phthalocyanine, Rhodamine 6G, etc	2-17	SiO ₂ /Si substrate	1
Graphene nanomesh	Rhodamine B	2	Single layer graphene	2
Graphene quantum dots	Rhodamine 6G	40-74	Si substrate	3
Graphene monolayer	Copper phthalocyanine	47.3	SiO ₂ /Si substrate	4
Reduced graphene monolayer	Rhodamine 6G	3-13	SiO ₂ /Si substrate	5
Reduced graphene oxide nanosheets	Rhodamine B	$\sim 10^3$	SiO ₂ /Si substrate	6
UV/Ozone- Oxidized	Rhodamine B	2.6×10^4	SiO ₂ /Si substrate	7
Graphene	Rhodamine 6G	1.6×10^4	2	
Present work	Rhodamine 6G	7.0×10^4	Si substrate	In this work

REFERENCES

- (1) Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. Can Graphene Be Used as a Substrate for Raman Enhancement? *Nano Lett.*2010, 10 (2), 553–561.
- (2) Liu, J.; Cai, H.; Yu, X.; Zhang, K.; Li, X.; Li, J.; Pan, N.; Shi, Q.; Luo, Y.; Wang, X. Fabrication of Graphene Nanomesh and Improved Chemical Enhancement for Raman Spectroscopy. *J. Phys. Chem. C* **2012**, *116* (29), 15741–15746.
- (3) Cheng, H.; Zhao, Y.; Fan, Y.; Xie, X.; Qu, L.; Shi, G. Graphene-Quantum-Dot Assembled Nanotubes: A New Platform for Efficient Raman Enhancement. *ACS Nano* **2012**, *6* (3), 2237–2244.
- (4) Huang, S.; Ling, X.; Liang, L.; Song, Y.; Fang, W.; Zhang, J.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Molecular Selectivity of Graphene-Enhanced Raman Scattering.
 Nano Lett. 2015, 15 (5), 2892–2901.
- (5) Yin, F.; Wu, S.; Wang, Y.; Wu, L.; Yuan, P.; Wang, X. Self-Assembly of Mildly Reduced Graphene Oxide Monolayer for Enhanced Raman Scattering. *J. Solid State Chem.* **2016**, *237*, 57–63.
- (6) Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J. G. Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano 2011, 5 (2), 952–958.
- (7) Huh, S.; Park, J.; Kim, Y. S.; Kim, K. S.; Hong, B. H.; Nam, J.-M. UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering. *ACS Nano* **2011**, *5* (12), 9799–9806.