Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

J. Mater. Chem. C

Supplementary Information

Synthesis, crystal structure, enhanced photoluminescent property and fluoride detection ability of S-heterocyclic annulated perylene diimidepolyhedral oligosilsesquioxane dye

Hai-Jie Ben,¹ Xiang-Kui Ren,^{*,2} Bo Song,⁴ Xiaopeng Li,⁴ Yakai Feng,² Wei Jiang,³ Er-Qiang Chen,⁵

Zhaohui Wang,³ Shichun Jiang,^{*,1}

¹ School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China

² School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R.

China

³ Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

⁴ The Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa,

Florida 33620, United States

⁵ Beijing National Laboratory for Molecular Sciences, College of Chemistry, Peking University,

Beijing 100871, P. R. China

Fig. S1 ¹H NMR spectrum of 2a recorded in CDCl₃.

Fig. S2 ¹³C NMR spectrum of 2a recorded in CDCl₃.

Fig. S3 ¹H NMR spectrum of POSS-SPDI-POSS recorded in CDCl₃.

Fig. S4 ¹³C NMR spectrum of POSS-SPDI-POSS recorded in CDCl₃.

Fig. S5 FT-IR spectrum of POSS-SPDI-POSS compound.

Fig. S6²⁹Si NMR spectrum of POSS-SPDI-POSS recorded in CDCl₃.

Fig. S7 Solvent-dependent UV/Vis spectra of (a) C8-SPDI-C8 and (b) POSS-SPDI-POSS in MCH/ CHCl₃ mixed solvent systems with different ratios from 1/1 to 5/1 in the concentration of 5×10^{-5} mol/L at 25 °C. Arrows indicate the changes upon increasing the addition of MCH.

Fig. S8 Solvent-dependent UV/Vis spectra of branch-SPDI-branch in MeOH/ CHCl₃ mixed solvent systems with different ratios from 1/4 to 3/4 in the concentration of 5×10^{-5} mol/L at 25 °C.

Fig. S9 TGA curve of the POSS-SPDI-POSS compound.

Fig. S10 A set of DSC cooling and subsequent heating thermal diagrams of POSS-SPDI-POSS (-10 \sim 350 °C) at a rate of 10 °C/min.

Fig. S11 1D SAXD pattern of C8-SPDI-C8.

Fig. S12 2D WAXD pattern of the sheared C8-SPDI- C8.

Fig. S13 Fluorescence emission change of C8-SPDI-C8 (30 μ M in THF) observed upon the addition of various anions (300 μ M). Inset: the optical changes in fluorescence emission and color by UV irradiation (naked-eye detection).

Fig. S14 Bar graphs of fluorescence intensity change of (a) C8-SPDI-C8 (30 μ M in THF) and (b) POSS-SPDI-POSS (30 μ M in THF) observed upon the addition of various anions (300 μ M). "F/F₀" represents the final fluorescence intensity/initial fluorescence intensity.

Fig. S15 (a) ¹H NMR spectra (ranged 4.5-12 ppm) of POSS-SPDI-POSS in CDCl₃ (upper) and the solute after the addition of 10 equiv TBAF (below). (b) ¹H NMR spectra (ranged 0.4-3 ppm) of POSS-SPDI-POSS in CDCl₃ (upper) and the solute after the addition of 10 equiv TBAF (below). (The mark * is ascribed to the CH₃-CH(CH₃)-CH₂⁻ ion which comes from the isobutyl group of POSS cloven by fluoride). (c) ¹⁹F NMR spectra of TBAF in CDCl₃ (upper) and the solute after the addition of 10 equiv TBAF (below) in CDCl₃. (d) ²⁹Si NMR spectra of POSS-SPDI-POSS in CDCl₃ (upper) and the solute after the addition of 10 equiv TBAF (below) in CDCl₃. (d) ²⁹Si NMR spectra of POSS-SPDI-POSS in CDCl₃ (upper) and the solute after the addition of 10 equiv TBAF (below) in CDCl₃. (The POSS-SPDI POSS was dissolved 30 μ M in THF; upon addition of 10 equiv TBAF in the solution, the THF solvent was removed under vacuum. Then the solute was dissolved in CDCl₃ for the ¹H NMR experiment, ¹⁹F NMR and ²⁹Si NMR.)

 Table S1 Experimental and calculated crystallographic parameters of POSS-SPDI-POSS.

	2θ (deg)		d-spacing (nm)		Intensity
(hkl)	expta	calcd ^b	expt ^a	calcd ^b	expt ^c
100	3.75	3.75	2.36	2.36	VW
010	4.07	4.07	2.17	2.17	VS
-110	5.41	5.41	1.63	1.63	S
200	7.50	7.50	1.18	1.18	VW
020	8.16	8.14	1.08	1.09	VS
210	8.78	8.70	1.01	1.02	VS
-220	10.83	10.83	0.82	0.82	W
310	12.12	12.15	0.73	0.73	W
130	12.93	12.96	0.68	0.68	VW
-320	13.70	13.61	0.65	0.65	VW
-330	16.40	16.28	0.54	0.54	VW
340	20.30	20.30	0.44	0.44	m
520	21.10	20.88	0.42	0.43	W
001	8.00	8.00	1.11	1.11	VS
111	10.10	9.80	0.88	0.90	S
211	11.90	11.83	0.74	0.75	m
-221	13.50	13.48	0.66	0.66	VW
-321	15.70	15.81	0.56	0.56	VW
-231	16.50	16.21	0.54	0.55	VW
-331	18.40	18.16	0.48	0.49	W
002	16.00	16.04	0.55	0.55	W
-112	17.30	16.94	0.51	0.52	W
212	18.50	18.27	0.48	0.49	m
-332	23.10	22.93	0.39	0.39	VW
003	24.10	24.16	0.37	0.37	VW

^{*a*} Experimental values observed in Fig. 6. ^{*b*} Calculated values based on the monoclinic unit cell of a = 2.36 nm, b = 2.17 nm, c = 1.11 nm, $\alpha = \beta = 90^{\circ}$, $\gamma = 92.57^{\circ}$. ^{*c*} The experimental intensities in Fig. 6 are semiquantitatively estimated via amicrodesitometer and classified as very strong (vs), strong (s), medium (m), weak (w), and very weak (vw).