supporting information

Ligand Field Fine-tuning on Modulation of Magnetic Properties and

Relaxation Dynamics for Dysprosium (III) Single-Ion Magnets

(SIMs): Synthesis, Structure, Magnetism and Ab Initio Calculations

Sheng Zhang, ^{a,b} Haipeng Wu, ^a Lin Sun, ^a Hongshan Ke, ^a Sanping Chen,*^a Bing Yin,*^a Qing Wei, ^a Desuo Yang, ^b Shengli Gao^a

[a] Prof. Sanping. Chen, Dr. B. Yin

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China.

[b] Dr. Sheng Zhang, Prof. Desuo Yang

College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.

Corresponding authors

Prof. Sanping Chen

E-mail address: sanpingchen@126.com

Prof. Bing Yin

E-mail address: rayinyin@nwu.edu.cn

Compound	1	2	3	4
Emminical formaulo	$C_{41.33}H_{25.67}DyF_{12}$	$C_{42}H_{23}Dy$	$C_{43}H_{32}Dy \\$	$C_{45}H_{36}Dy$
Empirical formula	N ₂ O _{6.33}	$F_{12}N_2O_6$	$F_9N_2O_6$	$F_9N_2O_7$
Formula weight	1042.14	1042.12	1006.21	1050.26
Temperature	296(2) K	296(2) K	293(2)	296(2) K
Crystal system	Trigonal	Triclinic	Triclinic	Triclinic
space group	<i>P</i> -3	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	26.791(4)	10.273(2)	12.429(3)	10.8160(11)
<i>b</i> (Å)	26.791(4)	13.625(3)	17.651(4)	10.9937(11)
<i>c</i> (Å)	10.119(2)	15.204(3)	21.655(5)	18.5997(18)
α (°)	90	83.405(4)	87.902(5)	81.692(2)
eta (°)	90	87.777(4)	74.279(5)	86.565(2)
γ (°)	120	76.586(4)	71.393(4)	84.476(2)
$V(Å^3)$	6289.8(19)	2056.1(7)	4327.5(18)	2166.2(4)
Ζ	6	2	2	2
F(000)	3074	1022	1996	1046
Goodness of fit (F ²)	1.022	1.051	1.099	1.082
$\Gamma' = 1 D' = 1$ $\Gamma = 2 C = -1$	R1 = 0.0652	R1 = 0.0637	R1 = 0.1032	R1 = 0.0359
Final R indices [1>2sigma(1)]	$wR_2 = 0.1243$	$wR_2 = 0.1391$	$wR_2 = 0.2068$	$wR_2 = 0.1052$
	R1 = 0.1382	R1 = 0.1739	R1 = 0.1225	R1 = 0.0400
k indices (all data)	$wR_2 = 0.1415$	$wR_2 = 0.1905$	$wR_2 = 0.2561$	$wR_2 = 0.1150$
CCDC	1446105	1445984	1518734	1518732

 Table S1. Crystallographic Data for the compounds 1-4.

Table S2. Selected bond lengths (Å) and angles (°) for 1-4.

		1			
Dy(1)-O(1)	2.290(7)	O(1)-Dy(1)-O(5)	82.1(3)	O(1)-Dy(1)-O(3)	142.0(3)
Dy(1)-O(4)	2.295(7)	O(4)-Dy(1)-O(5)	75.0(2)	O(4)-Dy(1)-O(3)	73.1(3)
Dy(1)-O(2)	2.301(7)	O(2)-Dy(1)-O(5)	148.8(3)	O(2)-Dy(1)-O(3)	74.7(2)
Dy(1)-O(3)	2.326(7)	O(3)-Dy(1)-O(5)	118.2(3)	O(1)-Dy(1)-O(6)	143.1(3)
Dy(1)-O(6)	2.341(7)	O(6)-Dy(1)-O(5)	70.2(3)	O(4)-Dy(1)-O(6)	111.4(3)
Dy(1)-O(5)	2.381(8)	O(1)-Dy(1)-N(2)	111.0(3)	O(2)-Dy(1)-O(6)	139.8(2)
Dy(1)-N(2)	2.529(9)	O(4)-Dy(1)-N(2)	149.3(3)	O(1)-Dy(1)-N(1)	74.4(3)
Dy(1)-N(1)	2.558(8)	O(2)-Dy(1)-N(2)	75.7(3)	O(4)-Dy(1)-N(1)	146.9(3)
O(1)-Dy(1)-O(4)	83.1(3)	O(3)-Dy(1)-N(2)	80.0(3)	O(2)-Dy(1)-N(1)	112.3(2)
O(1)-Dy(1)-O(2)	73.3(3)	O(6)-Dy(1)-N(2)	74.2(3)	O(3)-Dy(1)-N(1)	138.0(3)
O(4)-Dy(1)-O(2)	83.0(3)	O(5)-Dy(1)-N(2)	132.4(3)	O(6)-Dy(1)-N(1)	76.4(3)

O(3)-Dy(1)-O(6)	74.4(2)	N(2)-Dy(1)-N(1)	63.4(3)	O(5)-Dy(1)-N(1)	78.2(3)
$D_{\rm W}(1) O(2)$	7706101	$2 = 0(3) D_{y}(1) O(1)$	71 7(2)	$O(3)$ $D_{2}(1)$ $O(5)$	142 7(2)
Dy(1)-O(3)	2.280(8)	O(3)-Dy(1)-O(1)	(1.)(3)	O(3)-Dy(1)-O(3)	142.7(2)
Dy(1)-O(0)	2.302(9)	O(0)-Dy(1)-O(1)	138.8(3)	O(0)-Dy(1)-O(3)	72.0(2)
Dy(1)-O(2)	2.307(8)	O(2)-Dy(1)-O(1)	1/2.7(3)	O(2)-Dy(1)-O(3)	75.0(5)
Dy(1)-O(5)	2.311(8)	O(5)-Dy(1)-O(1)	142.6(3)	O(3)-Dy(1)-O(4)	/1.5(3)
Dy(1)-O(4)	2.327(7)	O(4)- $Dy(1)$ - $O(1)$	115.3(3)	O(6)-Dy(1)-O(4)	87.8(2)
Dy(1)-O(1)	2.334(10)	O(3)-Dy(1)-N(2)	138.0(3)	O(2)-Dy(1)-O(4)	81./(3)
Dy(1)-N(2)	2.553(10)	O(6)-Dy(1)-N(2)	93.7(3)	O(5)-Dy(1)-O(4)	77.5(2)
Dy(1)-N(1)	2.605(9)	O(2)-Dy(1)-N(2)	81.3(3)	O(3)-Dy(1)-N(1)	76.0(4)
O(3)-Dy(1)-O(6)	85.7(3)	O(5)-Dy(1)-N(2)	74.9(3)	O(6)-Dy(1)-N(1)	71.2(3)
O(3)-Dy(1)-O(2)	119.2(3)	O(4)-Dy(1)-N(2)	150.5(4)	O(2)-Dy(1)-N(1)	131.9(3)
O(6)-Dy(1)-O(2)	147.4(3)	O(1)-Dy(1)-N(2)	82.1(3)	O(5)-Dy(1)-N(1)	122.2(3)
O(4)-Dy(1)-N(1)	142.3(4)	O(1)-Dy(1)-N(1)	70.2(3)	O(3)-Dy(1)-O(1)	71.7(3)
		3			
Dy(1)-O(2)		2.28(3)	O(6-Dy(1)-	·O(3) 1.	39.5(9)
Dy(1)-O(6)		2.30(3)	O(6)-Dy(1)	-N2) 7	2.7(9)
Dy(1)-O(5)		2.33(3)	O(5)-Dy(1)	-N(1) 1.	36.8(8)
Dy(1)-O(4)		2.34(3)	O(5)-Dy(1)	-O(4) 7'	7.3(10)
Dy(1)-O(3)		2.36(2)	O(5)-Dy(1)	-O(3) 14	45.2(9)
Dy(1)-O(1)		2.28(2)	O(5)-Dy(1)	-N(2) 8	0.7(9)
N(1)-Dy(1)-N2)	64.1(9)	O(4)-Dy(1)	-N(1) 1	14.1(9)
O(2)-Dy(1)-N(1	.)	80.2(8)	O4)-Dy(1)-	·O(3) 7	1.3(9)
O(2)-Dy(1)-O(6	5)	79.5(9)	O(4)-Dy(1)	-N(2) 7	5.2(9)
O(2)-Dy(1)-O(5	5)	119.3(10)	O(3)-Dy(1)	-N(1) 7	2.0(8)
O(2)-Dy(1)-O(4	ł)	139.5(9)	O(3)-Dy(1)	-N(2) 10	04.9(9)
O(2)-Dy(1)-O(3	3)	78.6(9)	O(1)-Dy(1)	-N(1) 14	45.9(8)
O(2)-Dy(1)-O(1)	73.6(8)	O(1)-Dy(1)	-O(6) 12	23.5(9)
O(2)-Dy(1)-N(2	2)	140.1(9)	O(1)- Dy(1)	-O(5) 7	6.4(9)
O(6)-Dy(1)-N(1)	71.0(9)	O(1)- Dy(1)	-O(4) 7	5.7(9)
O(6)-Dy(1)-O(5	5)	75.3(10)	O1)- Dy(1)-	-O(3) 8	1.6(8)
O(6)-Dy(1)-O(4	ł)	140.4(9)	O(1)- Dy(1)	-N(2) 14	46.1(9)
N(1)-Dy(1)		2.477(18)	Dy(1)-N	(2) 2	.53(3)
		4			
Dy(1)-O(5)		2.307(3)	O(3)-Dy(1)	-O(2) 75	.07(12)
Dy(1)-O(6)		2.315(3)	O(5)-Dy(1)	-O(4) 77	.71(11)
Dy(1)-O(1)		2.319(3)	O(6)-Dy(1)	-O(4) 141	.62(11)
Dy(1)-O(3)		2.333(3)	O(1)-Dy(1)	-O(4) 75	.78(11)

Dy(1)-O(2)	2.336(3)	O(3)-Dy(1)-O(4)	71.75(11)
Dy(1)-O(4)	2.359(3)	O(2)-Dy(1)-O(4)	136.13(11)
Dy(1)-N(1)	2.544(4)	O(5)-Dy(1)-N(1)	134.04(11)
Dy(1)-N(2)	2.554(4)	O(6)-Dy(1)-N(1)	72.13(11)
O(5)-Dy(1)-O(6)	73.26(10)	O(1)-Dy(1)-N(1)	150.50(12)
O(5)-Dy(1)-O(1)	74.08(11)	O(3)-Dy(1)-N(1)	74.74(12)
O(6)-Dy(1)-O(1)	118.28(11)	O(2)-Dy(1)-N(1)	82.83(12)
O(5)-Dy(1)-O(3)	145.59(11)	O(4)-Dy(1)-N(1)	114.31(12)
O(6)-Dy(1)-O(3)	141.11(11)	O(5)-Dy(1)-N(2)	79.56(12)
O(1)-Dy(1)-O(3)	83.26(11)	O(6)-Dy(1)-N(2)	75.90(12)
O(5)-Dy(1)-O(2)	120.27(11)	O(1)-Dy(1)-N(2)	143.73(12)
O(6)-Dy(1)-O(2)	81.12(11)	O(3)-Dy(1)-N(2)	106.53(12)
O(1)-Dy(1)-O(2)	72.54(11)	O(2)-Dy(1)-N(2)	143.50(12)

Table S3. Dy^{III} ion geometry analysis of 1-4 by SHAPE 2.1 software.

 Dy^{III} ion geometry analysis of 1

HPP-8 3 Deh Heragonal bipyramid SAPR-8 5 Did4 Square antiprism TD-8 6 D22 Triangular dodecahedron JGEP-8 7 D24 Johnson syrobifastigium J26 JGEP-8 10 C22 Biaugemented trigonal prism J50 BTPR-8 0 C22 Biaugemented trigonal prism JSD-8 11 D22 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JETEP-8 BTPR-8 ABOXIT , 16.036, 9.293, 0.511, 2.267, 15.933, 226.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPY-8 3 Deh Heragonal bipyramid CU-8 SAPR-8 5 Did4 Square antiprism JGEP-8 7 D24 Johnson gorobifastigium J26 JGEP-8 7 D24 Johnson gorobifastigium J26 JGEP-8 11 D22 Snub diphenoid J84 Structure [ML8] MEY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JETEP-8 STPR-8 SAPR-8 5 D4d Square antiprism JGEP-8 7 D24 Johnson gorobifastigium J26 JGEP-8 11 D22 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JETEP-8 JSD-8 ADOXIT J D28 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JETEP-8 JSD-8 ADOXIT J D28 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JETEP-8 JSD-8 ADOXIT J D28 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JSTPR-8 JSD-8 ADOXIT J D28 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JSTPR-8 JSD-8 ADOXIT J D29 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JSTPR-8 JSD-8 ADOXIT J D29 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGER-8 JETEPY-8 JSTPR-8 JSD-8 ADOXIT J T CONTINUOUS Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: Hunell&bu.edu T	Dy ^{III} ion (SHAPE (c) 2013 E1 	v2.1 Lectronic Tres 3 Dé 4 Of 5 DJ 6 D2 7 D2 7 D2 7 D2 8 D3 9 C2 10 C2 11 D2	Structure (sontact: 11) bh Hexagon d Cube d Square a d Triangu d Johnson tu Biaugmen tu Biaugmen d Snub di	al bipyramic antiprism Lar dodecahe gyrobifasti elongated t nted trigona nted J84	I gium J26 riangular b I prism J50 I prism	ipyramid J1	4					
HEPP-8 3 06h Heragonal bipyramid SAFR-8 5 144 Square antiprism TDD-8 6 1224 Triangular dodecahedron JGEF-8 7 1224 Johnson syrobifastigium J26 JGEF-8 7 1224 Johnson syrobifastigium J26 JETFF-8 9 C2+ Biaugemented trigonal prism J50 EFFR-8 10 C2+ Biaugemented trigonal prism JSD-8 11 D24 Snub diphenoid J84 Structure [UL8] HEPY-8 C1-8 SAFR-8 TDD-8 JGEF-8 JETEFY-8 JBTFR-8 BTFR-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{UII} ion geometry analysis of 2 HEPY-8 3 D6h Heragonal bipyramid C1-8 4 0h Cube SAFR-8 5 D44 Square antiprism TDD-8 6 D24 Triangular dodecahedron JETFR-8 10 C2+ Biaugemented trigonal prism JSD-8 11 D24 Snub diphenoid J84 Structure [UL8] HEPY-8, C1-8 SAFR-8 TDD-8 JGEF-8 JETEFY-8 JBTFR-8 BTFR-8 JSD-8 10 D4 Square antiprism TDD-8 6 D24 Graumented trigonal prism JSD-8 11 D24 Snub diphenoid J84 Structure [UL8] HEPY-8, C1-8 SAFR-8 TDD-8 JGEF-8 JETEFY-8 JBTFR-8 JSD-8 ABOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structure [UL8] HEPY-8 C1-8 SAFR-8 TDD-8 JGEF-8 JETEFY-8 JETFR-8 JSD-8 ABOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structure Foug, Universitat de Barcelona Contact: 1 luneIldw.edu 	Dy ^{III} ion { SH A P E (c) 2013 E1 PtL4 structu HBPY-8 CU-8 SAPR-8 JETBPY-8 JETBPY-8 JETBPY-8	v2.1 Lectronic (3 Dé 4 Of 5 DJ 6 D2 7 D2 8 D3 9 C5	Structure (contact: 1) h Hexagona h Cube id Square a d Triangu d Johnson h Johnson h Johnson	al bipyramic al bipyramic antiprism Lar dodecahe gyrobifasti elongated t elongated t	I I gium J26 riangular b I nrism J50	ipyramid J1	4					
HEPT-8 3 D6h Hexagonal bipyramid SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGEP-8 7 D2d Johnson elongated triangular bipyramid J14 JETEPT-8 9 C2v Biaugmented trigonal prism JSD-8 11 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JETER-8 ETER-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, DyIII ion geometry analysis of 2 HEPT-8 3 D6h Hexagonal bipyramid CU-8 4 0h Cube Stress 10 C2v Biaugmented trigonal prism JETER-8 9 C2v. DyIII ion geometry analysis of 2 HEPT-8 3 D6h Hexagonal bipyramid CU-8 4 0h Cube Stress 10 C2v Biaugmented trigonal prism DEFR-8 9 C2v Biaugmented trigonal prism DEFR-8 9 C2v Biaugmented trigonal prism JSD-8 11 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JETER-8 STER-8 JSD-8 JSD-8 11 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JETER-8 JSD-8 JSD-8 11 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JETER-8 JSD-8 JSD-8 11 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JETER-8 JSD-8 JSD-8 11 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JETER-8 JSD-8 JSD-8 11 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JETER-8 JSD-8 JSD-8 11 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JETER-8 JSD-8 JSD-8 10 C2v Biaugmented trigonal prism JSD-8 10 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JSTPR-8 JSD-8 JSD-8 10 D2d Snub diphenoid J84 Structure [UL8] HEPT-8 CU-8 SAPR-8 TDD-8 JGEP-8 JETEPT-8 JSTPR-8 JSD-8 JSD-8 10 D2d Snub diphenoid J84 Structure STURE S	Dy ^{III} ion { SH A P E (c) 2013 E1 PtL4 structu HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8	v2.1 Lectronic Ires 3 Dé 4 Of 5 DJ 6 D2 7 D2	: Structure (contact: 11) in Hexagona n Cube id Square a 2d Triangu 2d Johnson	al bipyramic al bipyramic antiprism Lar dodecahe gyrobifasti	ı I gium J26							
HEPT-8 3 Doh Hexagonal bipyramid GU-8 4 Oh Cube SAPR-8 5 D4d Square antiprism JGBP-8 7 D2d Johnson exrobifastigium J26 JGBP-8 7 D2d Johnson exrobifastigium J26 JGBP-8 9 C2v Biaugeneted trigonal prism JSD-8 11 D2d Snub diphenoid J84 Structure [ML8] HEPT-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPT-8 JETPR-8 ETFR-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPT-8 3 D6h Hexagonal bipyramid CU-8 4 Oh Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGBF-8 7 D2d Johnson eyrobifastigium J50 ETFR-8 10 C2v Biaugeneted trigonal prism JBTR-8 9 C2v Biaugeneted trigonal prism JBTR-8 10 C2v Biaugeneted trigonal prism SU-8 10 Fe V2.1 Continuous Shape Measures calculation CONTACCUPA SUPA SUPA SUPA SUPA SUPA SU	Dy ^{III} ion (S H A P E (c) 2013 E1 PtL4 structu HBPY-8 CU-8 SAPR-8 TDD-8	v2.1 Lectronic Ires 3 Dé 4 Of 5 DJ 6 D2	Structure (contact: 11) 	al bipyramic al bipyramic antiprism Lar dodecahe	ı I							
HEPT-8 3 D6h Hexagonal bipyramid SAPR-8 5 D44 Square antiprism TD-8 6 D62 Triangular dode caledron JGBT-3 7 D24 Johnson synobiastigium J26 JGBT-8 7 D24 Johnson synobiastigium J26 JGBT-8 1 D62 Biaugmented trigonal prism JBTPR-8 0 C67 Biaugmented trigonal prism JBTPR-8 1 D62 Stude tiphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBP-8 JETEPY-8 JETPR-8 BTPR-8 ABOXIT , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPY-8 3 D6h Hexagonal bipyramid CU-8 4 Ch Cube SAPR-8 5 D44 Square antiprism JDTPR-8 1 D62 Square antiprism JDTPR-8 1 D62 Square antiprism JDTPR-8 1 D62 Square antiprism JDTPR-8 1 D62 Square antiprism STRUCTURE [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBP-8 JETEPY-8 JETPR-8 BTPR-8 SAPR-8 5 D44 Square antiprism JDTPR-8 1 D62 Square antiprism JDTPR-8 1 D62 Square Square antiprism STRUCTURE [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETEPY-8 JETPR-8 BTPR-8 JSD-8 ADOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETEPY-8 JETPR-8 BTPR-8 JSD-8 ADOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structures [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETEPY-8 JETPR-8 BTPR-8 JSD-8 ADOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structures [ML8] HEPY-8 CU-8 SAPR Hessures calculation (c) 2013 Electronic Structure Group, Unioresitat de Barcelona Contact: lluelldwb.edu 	Dy ^{III} ion (S H A P E (c) 2013 E1 PtL4 structu HBPV-8 CU-8 SAPR-8	v2.1 Lectronic Ires 3 Dé 4 Of 5 DJ	Structure (contact: 11) h Hexagona Gube d Square a	al bipyramic antiprism								
HEPT-3 3 D6h Hexagonal bipyramid SAPR-3 5 D44 Square antiprism TDD-9 6 D24 Triangular dodecahedron JBTP-3 8 D25 7 D24 Johnson groupointastigium J26 JBTPP-3 8 D5h Johnson elongated triangular bipyramid J14 JBTPR-3 10 C27 Biaugemented trigonal prism JBD-8 11 D24 Subb diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETEPY-8 JBTPR-8 BTPR-8 ABOXIT , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPY-8 3 D6h Hexagonal bipyramid Ct-8 4 0h Cube SAPR-8 5 D44 Square antiprism JGBF-8 7 D24 Johnson groupitastigium J26 JETFR-8 9 C27 Biaugemented trigonal prism JSD-8 11 D24 Sub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETEPY-8 JBTPR-8 BTPR-8 ABOXIT , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPY-8 3 D6h Hexagonal bipyramid Ct-8 4 0h Cube SAPR-8 5 D44 Square antiprism JGBF-8 7 D24 Johnson groupitastigium J26 JETFR-8 10 C27 Biaugemented trigonal prism J50 BTFR-8 10 C27 Biaugemented trigonal prism JSD-8 11 D24 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETEPY-8 JBTPR-8 BTPR-8 JSD-8 ABOXIT , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structure [ML8] HEPY-8 CU-1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona Contact: Ilunell@ub.edu 	Dy ^{III} ion (S H A P E (c) 2013 E1 PtL4 structu HBPY-8 CU-8	v2.1 Lectronic (Ires 3 Dé 4 Of	Structure (contact: 11) h Hexagona Cube	al bipyramic								
HEPT-8 3 D6h Hexagonal bipyramid SAPR-3 5 D4d Square antiprism TD-8 6 D2d Triangular dodecahedron JGBT-3 7 D2d Johnson elongated triangular bipyramid J14 JBTEPR-8 9 C27 Biaugmented trigonal prism JD-8 10 C27 Biaugmented trigonal prism JD-8 JGBF-8 JETEPY-8 JETEPY-8 JETEPY-8 JETEPR-8 BTFR-8 ABOXIT , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPY-8 3 D6h Hexagonal bipyramid CU-8 4 Dh Cube SAFR-8 5 D4d Square antiprism JD-8 0 D22 Triangular dodecahedron JGFF-9 0 D24 Johnson gyrobifastigium J26 JETEP-8 0 D25 Hiaugmented trigonal prism JD-8 11 D24 Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAFR-8 TDD-8 JGBF-8 JETEPY-8 JETEPR-8 BTFR-8 JSD-8 ABOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structure [ML8] HEPF-8 CU-8 SAFR-8 TDD-8 JGBF-8 JETEFY-8 JETER-8 JSD-8 ABOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structure [ML8] HEPF-8 CU-8 SAFR-8 TDD-8 JGBF-8 JETEFY-8 JETER-8 JSD-8 ABOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structure [ML8] HEPF-8 CU-8 Cu-8 SAFR-8 TDD-8 JGBF-8 JETEFY-8 JETER-8 JSD-8 ABOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 D40 JUII ion geometry analysis of 3 Structure [ML8] HEPF-8 CU-8 Cu-8 SAFR-8 TDD-8 JGBF-8 JETER-8 JSD-8 HEPY-8 3 260 Hexagonal bipyramid	Dy ^{III} ion §	u2.1 Lectronic U Ires 3 Dé	Structure (contact: 11)	al bipyramic				00000				
HEPT-8 3 D6h Hexagonal bipyramid SAFR-8 5 D44 Square antiprism TDD-8 6 D22 Triangular dodecahedron JGBP-8, 7 D24 Johnson group irism J26 JGTPT-8 8 D3h Johnson elongated triangular bipyramid J14 JBTPR-8 0 C2* Biaugmented trigonal prism JBD-8 11 D24 Snub diphenoid J84 Structure [ML8] HEPT-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETEPT-8 JETPR-8 BTPR-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPT-8 3 D6h Hexagonal bipyramid GT-8 4 0h Cobe SAPR-8 5 D4d Square antiprism JGBF-8 7 D24 Johnson group in the doecahedron JGBF-8 7 D24 Johnson group in the doecahedron JGBF-8 7 D24 Johnson group in the doecahedron JGBF-8 10 C2* Biaugmented trigonal prism JGBF-8 10 C2* Biaugmented trigonal prism JGD-8 10 C2* C2* Biaugmented trigonal prism JGD-8 10 C2* Biaugmented trigonal prism JGD-8 10 C2* Sub diphenoid J84 Structure D18 2 HEFY-8 CU-8 SAPR-8 TDD-8 JGEF-8 JETEFY-8 JETEFY-8 JETEFY-8 JGTPR-8 JGTP	Dy ^{III} ion { S H A P E (c) 2813 E1 PtL4 structu	v2.1 Lectronic (Structure (Contact: 11)	unell@ub.edu								
HEPT-8 3 D6h Hexagonal bipyramid GU-8 4 0h Gube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGBF-8 7 D2d Johnson gyrobitastigium J26 JGBF-8 9 C2v Biaugmented trigonal prism JSD-8 11 D2d Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JETPR-8 ETPR-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPY-3 3 D6h Hexagonal bipyramid CU-3 4 0h Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron 10Br-8 7 D2d Johnson gyrobitastigium J26 JGBF-7 3 8 D6h Hexagonal bipyramid CU-8 4 0h Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron 10Br-8 7 D2d Johnson gyrobitastigium J26 JETPF7-3 8 D6h Johnson elongated triangular bipyramid J14 JETPR-8 10 C2v Biaugmented trigonal prism JBD-8 11 D2d Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JETPR-8 STPR-8 JSD-8 ADOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JETPR-8 STPR-8 JSD-8 ADOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3	Dy ^{III} ion {	v2.1 Lectronic (Structure Contact: 11	unell@ub.edu	l							
HEPY-8 3 D6h Hexagonal bipyramid CU-8 4 0h Cube SARR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGBF-8 7 D2d Johnson elongated triangular bipyramid J14 JETTPR-8 9 C2v Biaugmented trigonal prism JSD-8 11 D2d Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBFY-8 JBTPR-8 BTPR-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPY-8 5 D4d Square antiprism JGD-8 5 D4d Square antiprism JGD-8 5 D4d Square antiprism DFB-8 6 D2d Triangular dodecahedron JGBF-8 7 D2d Johnson gyrobitastigium J26 JFTPFR-8 9 C2v Biaugmented trigonal prism J50 BTFR-8 10 C2v Cube Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBFY-8 JBTPR-8 BTPR-8 SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGBF-8 7 D2d Johnson gyrobitastigium J26 JFTPR-8 9 C2v Biaugmented trigonal prism J50 BTFR-8 10 C2v Biaugmented trigonal prism J50 BTFR-8 10 C2v Biaugmented trigonal prism J50 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBFY-8 JBTPR-8 BTPR-8 JSD-8 ADOXIY , 15.550, 10.541, 1.344, 1.509, 14.497, 28.104, 1.785, 1.314, 4.070 Dy ^{III} ion geometry analysis of 3 	Dy ^{III} ion §		Contin	uous Shape M Group Unius	leasures cal ersitat de B	culation arcelona						
HEPY-8 3 D6h Hexagonal bipyramid CU-8 4 0h Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGEF-8 7 D2d Johnson elongated triangular bipyramid J14 JBTPR-8 9 C2v Biaugmented trigonal prism JSD-8 11 D2d Snub diphenoid J84 Structure [ML8] HEPY-8 CU-8 SAPR-8 TDD-8 JGEF-8 JETBPY-8 JBTPR-8 BTPR-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HEPY-8 3 D6h Hexagonal bipyramid CU-8 4 0h Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGEF-8 7 D24 Johnson gyrobifastigium J26 JETBPY-8 8 D3h Johnson elongated triangular bipyramid J14 JBTPR-8 9 C2v Biaugmented trigonal prism JGEF-8 7 D24 Johnson gyrobifastigium J26 JETBPY-8 10 D2 Triangular dodecahedron JGEF-8 7 D24 Johnson gyrobifastigium J26 JETBPY-8 10 D2 Biaugmented trigonal prism JSD-8 10 C2v Biaugmented trigonal prism JSD-8 10 C2v Jiaugmented trigonal prism		geome	try analy	sis of 3								
HBPY-8 3 D6h Hexagonal bipyramid CU-8 4 0h Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGBF-8 7 D2d Johnson elongated triangular bipyramid J14 JBTPR-8 9 C2v Biaugmented trigonal prism JSD-8 11 D2d Snub diphenoid J84 Structure [ML8] HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207, Dy ^{III} ion geometry analysis of 2 HBPY-8 3 D6h Hexagonal bipyramid CU-8 4 0h Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGBF-8 7 D24 Johnson gyrobitastigium J26 JGFF-8 9 C2v Biaugmented trigonal prism JGFF-8 10 C2v Biaugmented trig	Structure [ML8 ABOXIY	3] ,	HBPY-8 15.550,	CU-8 10.541,	SAPR-8 1.344,	TDD-8 1.509,	JGBF-8 14.497,	JETBPY-8 28.104,	JBTPR-8 1.785	BTPR-8 1.314	JSD-8 4.070	
HBPY-8 3 D6h Hexagonal bipyramid CU-8 4 Oh Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGEF-8 7 D2d Johnson syrobifastigium J26 JETBPY-8 8 D3h Johnson elongated triangular bipyramid J14 JBTPR-8 9 C2v Biaugmented trigonal prism J50 JSD-8 11 D2d Snub diphenoid J84 Structure [ML8] HBPY-8 CU-8 SAPR-8 TDD-8 JGEF-8 JETBPY-8 BTPR-8 AbOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207,	HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8	3 D6h 4 Oh 5 D4d 6 D2d 7 D2d 8 D3h 9 C2v 10 C2v 11 D2d	Hexagonal bi Cube Square antip Triangular d Johnson gyrc Johnson elon Biaugmented Biaugmented Snub diphence	pyramid rism lodecahedron bifastigium j gated triangu trigonal pris id J84	126 ular bipyrami sm J50 sm	d J14						
HBPY-8 3 D6h Hexagonal bipyramid CU-8 4 Oh Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGEF-8 7 D2d Johnson gyrobifastigium J26 JBTBPY-8 8 D3h Johnson elongated triangular bipyramid J14 JBTPR-8 9 C2v Biaugmented trigonal prism J50 BTRR-8 10 C2v Biaugmented trigonal prism JSD-8 11 D2d Snub diphenoid J84 Structure [ML8] HBPY-8 CU-8 SAPR-8 TDD-8 JEBF-8 JETPR-8 BTPR-8 ABOXIY , 16.036, 9.293, 0.511, 2.267, 15.933, 28.208, 2.818, 2.207,	Dy ^{III} ion §	geome	try analy	sis of 2								
HBPY-8 3 D6h Hexagonal bipyramid CU-8 4 Oh Cube SAPR-8 5 D4d Square antiprism TDD-8 6 D2d Triangular dodecahedron JGEF-8 7 D2d Johnson gyrobifastigium J26 JETBPY-8 8 D3h Johnson elongated triangular bipyramid J14 JBTPR-8 9 C2v Biaugmented trigonal prism J50 JSD-8 11 D2d Snub diphenoid J84	Structure [ML ABOXIY	8] ,	HBPY-8 16.036,	CU-8 9.293,	SAPR-8 0.511,	TDD-8 2.267,	JGBF- 15.93	8 JETBI 3, 28.	9Y-8 Ji 208,	BTPR-8 2.818,	BTPR-8 2.207,	JSD-8 5.166
	JETBPY-8 JBTPR-8 BTPR-8 JSD-8	6 D2d 7 D2d 8 D3h 9 C2v 10 C2v 11 D2d	Cube Square ant Triangular Johnson gy Johnson el Biaugmente Biaugmente Snub diphe	iprism dodecahedro robifastigiu ongated tris d trigonal p d trigonal p noid J84	m m J26 ngular bipyr rism J50 rism	amid J14						

Structure [mlo] 1677-8 20-8 3474-8 100-8 3667-8 32167-8 361744-8 361748-8 361748-8 361748-8 36174-8 361748-8 361748-8 36174-8 361766-8 361768-8 361748-8 3617

Dy^{III} ion geometry analysis of 4

1.730,

	Coi	ntact: llun	ell@ub.edu							
PtL4 struc	tures									
HBPY-8 CU-8 SAPR-8 TDD-8 JGBF-8 JETBPY-8 JBTPR-8 BTPR-8 JSD-8	3 D6h 4 Oh 5 D4d 6 D2d 7 D2d 8 D3h 9 C2v 10 C2v 11 D2d	Hexagonal Cube Square an Triangula Johnson g Johnson e Biaugment Biaugment Snub diph	bipyramid tiprism r dodecahedro yrobifastigiu longated tria ed trigonal p ed trigonal p enoid J84	n m J26 ngular bipyra rism J50 rism	amid J14					
Structure	[ML8]	HBPY-8	CU-8	SAPR-8	TDD-8	JGBF-8	JETBP'	Y-8	JBTPR-8	
ABOXIY 2.135,	JSD-8 4.959	16.139,	9.026,	0.557,	1.994,	16.464,	27.	854,	2.664	,
	C	C 4			ABOXIY,	ABO	KIY,	ABO	XIY,	ABOXIY,
	C	onfigurati	on		1	2		3	3	4
	Hexagor	al bipyrai	nid (D_{6h})		16.036	15.5	50	15.	510	16.139
		Cube (O _h))		9.293	10.5	41	10.	186	9.026
	Square	e antiprisr	n (D _{4d})		0.511	1.34	14	0.8	34	0.557
]	Friangular	dodecahe	edron (D_{2d}))	2.267	1.50)9	2.3	00	1.994
Jo	hnson gyr	obifastigi	um J26 (D2	_{2d})	15.933	14.4	97	14.	919	16.464
Johnso	n elongate	ed triangut (D_{3h})	lar bipyran	nid J14	28.208	28.1	04	27.	555	27.845
Biau	ugmented	trigonal p	rism J50 (C_{2v})	2.818	1.78	35	2.3	42	2.664
Bi	iaugmente	ed trigonal	prism (C_2	v)	2.207	1.3	14	1.7	30	2.135
	Snub si	phenoid J	84 (D _{2d})		5.166	4.07	70	4.8	886	4.959

S H A P E v2.1 Continuous Shape Measures calculation (c) 2013 Electronic Structure Group, Universitat de Barcelona

Figure S1. Packing arrangement between two neutral in 3.

Figure S2. Packing arrangement between two neutral in 4.

Figure S4. Relaxation time of the magnetization for **1** extracted from the temperature-dependent data under zero-DC field. The red solid lines represent the fitting by the Arrhenius law for high temperature region.

Figure S5. Relaxation time of the magnetization for **1** (a)-**4** (d) extracted from the temperaturedependent data under an applied dc field of 1200 Oe. The red solid lines represent the fitting by the Arrhenius law for high temperature region.

Figure S6. Relaxation time of the magnetization for **3** (a) and **4** (b) extracted from the frequencydependent data , by fitting the χ''_{M} vs. frequency curves based on the Debye model, under 1200 Oe-DC field. The red solid lines represent the fitting by the Arrhenius law for high temperature region.

Figure S7. Simulations of dynamical susceptibility $\chi(\omega)$ of 1 ranging from 4 to 15 K in a Cole-Cole diagram. Red lines were performed using the sum of two modified Debye functions with the fitting parameters in Table S4.

Figure S8. Simulations of dynamical susceptibility $\chi(\omega)$ of **2** ranging from 2.8 to 13 K in a Cole-Cole diagram. Redlines were performed using the sum of two modified Debye functions with the fitting parameters in Table S5.

Figure S9. Simulations of dynamical susceptibility $\chi(\omega)$ of **3** ranging from 4.6 to 11 K in a Cole-Cole diagram. Redlines were performed using the sum of two modified Debye functions with the fitting parameters in Table S6.

Figure S10. Simulations of dynamical susceptibility $\chi(\omega)$ of **4** ranging from 2.0 to 14 K in a Cole-Cole diagram. Redlines were performed using the sum of two modified Debye functions with the fitting parameters in Table S7.

The magnetic susceptibility data were described by the modified Debye functions:¹

$$\chi'(\omega) = \chi_{\rm S} + (\chi_{\rm T} - \chi_{\rm S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha) + (\omega\tau)^{(2-2\alpha)}}$$
$$\chi''(\omega) = (\chi_{\rm T} - \chi_{\rm S}) \frac{(\omega\tau)^{1-\alpha} \cos(\frac{\pi}{2}\alpha)}{1 + 2(\omega\tau)^{1-\alpha} \sin(\frac{\pi}{2}\alpha) + (\omega\tau)^{(2-2\alpha)}}$$
$$\chi''_{\omega=\tau^{-1}} = (\chi_{\rm T} - \chi_{\rm S}) \frac{\cos(\frac{\pi}{2}\alpha)}{2 + 2\sin(\frac{\pi}{2}\alpha)} = \frac{1}{2} (\chi_{\rm T} - \chi_{\rm S}) \tan\frac{\pi}{4} (1-\alpha)$$

1. F. Habib, G. Brunet, V. Vieru, I. Korobkov, L. F. Chibotaru, M. Murugesu, J. Am. Chem. Soc. 2013, 135, 13242.

<i>T</i> (K)	$\Delta \chi_1$ (cm ³ mol ⁻¹)	$\Delta \chi_2$ (cm ³ mol ⁻¹)	α_1
4	3.336	0.059	0.408
6	2.041	0.089	0.278
8	1.492	0.125	0.180
10	1.190	0.167	0.105
10.5	1.134	0.171	0.097
11	1.084	0.177	0.091
11.5	1.038	0.190	0.082
12	0.999	0.199	0.077
12.5	0.961	0.202	0.086
13	0.926	0.194	0.106
13.5	0.890	0.289	0.034
14	0.858	0.285	0.055
15	0.806	0.304	0.053

Table S4. Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for **1**.

Table S5. Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for **2**.

<i>T</i> (K)	$T(K) \qquad \qquad \frac{\Delta \chi_1}{(cm^3 mol^{-1})}$		α_1
2.8	4.848	0.065	0.038
3.0	3.256	0.062	0.054
3.2	2.885	0.046	0.190
3.4	2.542	0.045	0.155
3.8	1.588	0.041	0.115
4.2	1.199	0.046	0.037
4.6	1.094	0.041	0.035
5.0	1.011	0.037	0.035
5.5	0.912	0.036	0.022
5.7	0.893	0.032	0.040
6.0	0.846	0.031	0.032
6.5	0.784	0.029	0.029
7.0	0.729	0.028	0.027
7.5	0.682	0.026	0.026
8.0	0.641	0.025	0.028
8.5	0.604	0.023	0.029
9.0	0.571	0.022	0.026
10	0.514	0.023	0.016
11	0.468	0.026	0.011
12	0.430	0.021	0.040
13	0.398	0.021	0.029

<i>T</i> (K)	$\Delta \chi_1 \text{ (cm}^3 \text{mol}^{-1}\text{)}$	$\Delta \chi_2 \text{ (cm}^3 \text{mol}^{-1}\text{)}$	α_1
4.6	0.879	0.108	0.272
5.0	0.867	0.099	0.284
5.5	0.869	0.085	0.322
5.7	0.853	0.080	0.336
6.0	0.818	0.077	0.327
6.5	0.757	0.070	0.329
7.0	0.701	0.066	0.319
7.5	0.651	0.062	0.307
8.0	0.603	0.058	0.292
8.5	0.567	0.055	0.275
9.0	0.533	0.051	0.269
10	0.457	0.062	0.179
11	0.436	0.054	0.211

Table S6. Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for **3**.

Table S7. Relaxation fitting parameters from Least-Squares Fitting of $\chi(\omega)$ data for 4.

<i>T</i> (K)	$\Delta \chi_1 \text{ (cm}^3 \text{mol}^{-1}\text{)}$	$\Delta \chi_2 \text{ (cm}^3 \text{mol}^{-1}\text{)}$	α_1
2.0	7.226	0.686	0.146
2.2	6.634	0.658	0.138
2.4	6.044	0.584	0.140
2.6	5.550	0.556	0.128
2.8	5.182	0.511	0.125
3.0	4.833	0.485	0.121
3.2	4.408	0.377	0.137
3.4	4.257	0.451	0.111
3.6	3.996	0.418	0.110
3.8	3.804	0.417	0.102
4.0	3.591	0.403	0.098
4.2	3.433	0.363	0.108
4.5	3.214	0.357	0.101
5.0	2.894	0.338	0.091
5.5	2.629	0.318	0.089
6.0	2.411	0.289	0.086
7.0	2.065	0.265	0.074
8.0	1.809	0.239	0.067
9.0	1.610	0.209	0.063
10	1.450	0.191	0.050
12	1.212	0.171	0.018
14	1.042	0.084	0.035

Figure S11. The orientation of the easy axis (g_Z) of the ground KD of 2 obtained from *ab initio* calculations

Figure S12. The orientation of the easy axis (g_Z) of the ground KD of 3 obtained from *ab initio* calculations.

Figure S13. The orientation of the easy axis (g_Z) of the ground KD of 4 obtained from *ab initio* calculations.

		Wavefunction composition
1	KD ₀ -1	91.57% $\left \frac{15}{2}\right\rangle$ +7.19% $\left \frac{11}{2}\right\rangle$
	KD ₀ -2	91.57% $\left \frac{15}{2} \right\rangle$ +7.19% $\left \frac{-11}{2} \right\rangle$
2	KD ₁ -1	85.20% $\left \frac{-15}{2} \right\rangle + 13.57\% \left \frac{-11}{2} \right\rangle$
	KD ₁ -2	85.20% $\left \frac{15}{2}\right\rangle$ +13.57% $\left \frac{11}{2}\right\rangle$
3	KD ₁ -1	78.93% $\left -\frac{15}{2} \right\rangle$ + 1.87% $\left -\frac{13}{2} \right\rangle$ + 11.87% $\left -\frac{11}{2} \right\rangle$ + 2.98% $\left -\frac{9}{2} \right\rangle$ + 2.57% $\left -\frac{5}{2} \right\rangle$
	KD ₁ -2	78.93% $\binom{15}{2}$ + 1.87% $\binom{13}{2}$ + 11.87% $\binom{11}{2}$ + 2.98% $\binom{9}{2}$ + 2.57% $\binom{5}{2}$
4	KD ₀ -1	93.88% $\left \frac{15}{2} \right\rangle + 5.53\% \left \frac{11}{2} \right\rangle$
	KD ₀ -2	93.88% $\left \frac{15}{2} \right\rangle$ +5.53% $\left \frac{11}{2} \right\rangle$

Table S8. Decomposition of the wavefunctions of ground KDs of 1-4 into componentscorresponding to the lowest atomic multiplet J=15/2, | JM >

Table S9 Coplanarity of the first-sphere atoms at the equatorial positions for 1-4

2	03	06	N8	N9	average
Deviation from average	-0.3287	0.3889	-0.2061	0.2001	0.2810
Z_coordinate	-0.5099	0.2617	-0.3333	0.0729	-0.1272
1	O4	05	N8	N9	average

Z_coordinate	0.4058	-0.7206	0.1072	-0.1350	-0.0856
Deviation from average	0.4914	-0.6350	0.1928	-0.0494	0.3422
3	O4	07	N8	N9	average
Z_coordinate	0.1245	-0.3376	0.4724	-0.6438	-0.0961
Deviation from average	0.2206	0.1299	0.5685	-0.5477	0.3667
4	02	03	N8	N9	average
Z_coordinate	0.0003	-0.4184	-0.2432	0.4225	-0.0597
Deviation from average	0.0600	-0.3587	-0.1835	0.4822	0.2711