Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supporting information

Sustainable Freestanding Biomechanical Energy Harvesting Smart Back Pack as a Portable-Wearable Power Source

Arunkumar Chandrasekhar,^a Nagamalleswara Rao Alluri,^b Venkateswaran Vivekananthan,^c Yuvasree Purusothaman,^d Sang-Jae Kim^{ab*}

> ^{a,c,d} Nanomaterials and System Lab, Department of Mechatronics Engineering, Jeju National University, Jeju 690-756, Republic of Korea
> ^b Faculty of Applied Energy System, Department of Mechanical Engineering, Jeju National University, Jeju 690-756, Republic of Korea

*Corresponding Author, Prof. Sang-Jae Kim (S-J. Kim), Fax: 0082-64-756-3886; Tel: 0082–64-754-3715. E-mail: kimsangj@jejunu.ac.kr

Table of Contents

Table S1	Triboelectric series of materials
Table S2	Comparison of the proposed SBP-TENG with other reports
Figure S1	Photograph of surface treated petri dish, solidified PDMS and FE-SEM images of PDMS
Figure S2	FE-SEM images of triboelectric active layer
Figure S3	Stability test of SBP-TENG
Figure S4	FE-SEM image of PDMS film after few cycles of operations
Figure S5	Short circuit current obtained during various force applied on the SBP-TENG
Figure S6	Output voltage with respect to different human motion vs different bag weight with
	error limits of real time bio-mechanical energy.
Figure S7	Output current with respect to different human motion vs different bag weight with
	error limits of real time bio-mechanical energy.

- Figure S8 Frequency components after Fourier transformed of the harvested voltage during human motion (walking, running, and bending).
- Figure S9. Capacitor charging circuit using multi unit-SBP-TENG
- Figure S10. Output voltage of multi-unit SBP-TENG with respect to walking motion *vs* different bag weight with error limits of real time bio-mechanical energy.
- Figure S11. Output current of multi-unit SBP-TENG with respect to walking motion *vs* different bag weight with error limits of real time bio-mechanical energy.
- Figure S12. Self-powered emergency LED light switching circuit

Calculation of the applied force

Here the external force using a linear motor. Hence, the force were calculated with equation,

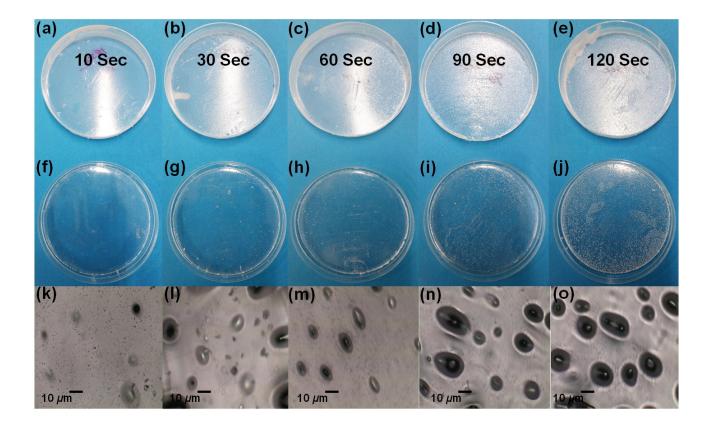
$$F = m \times a$$
 - (1)
 $F = Force$
 $m = Mass$
 $a = Acceleration$
 $m = 2.144 \text{ Kg}$
 $a = 10 \text{ m/s}$

Hence,

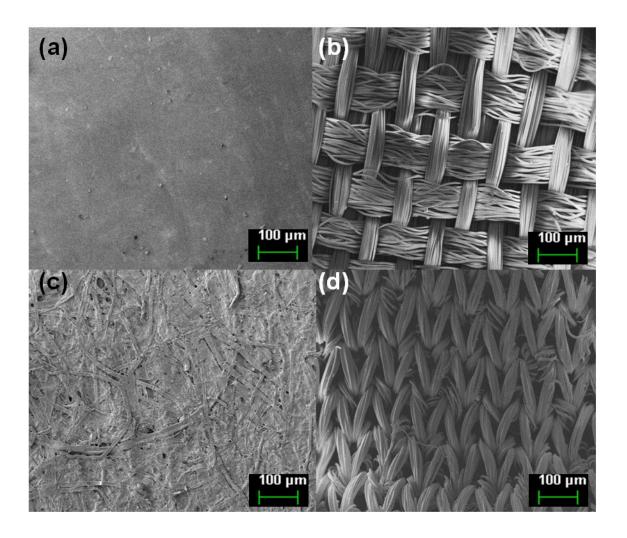
Example:

 $F = 2.144 \text{ Kg} \times 15 \text{ m/s}$ F = 21.44 N

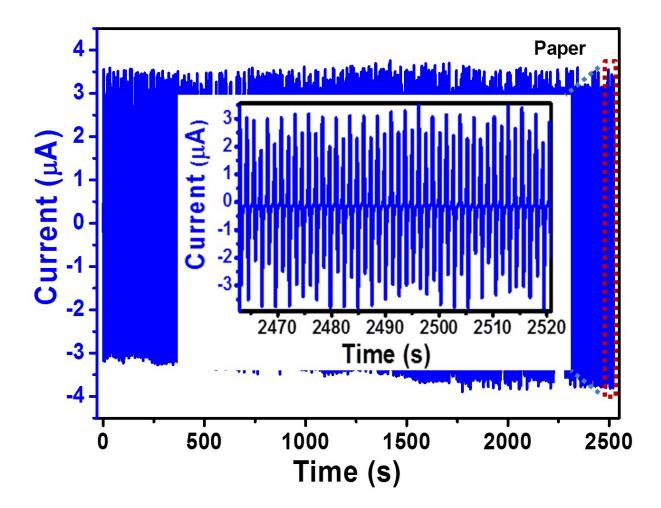
Calculation of peak power and power density


$$Power = I^2 \times R$$
 - (2)

No	Materials	Triboelectric charge	Role of Action
1	Aluminum		Electrode
2	Copper		Electrode
3	Wool	Positive	Contact Material
4	Paper	Positive	Contact Material
5	Jeans	Positive	Contact Material
6	Polyethylene	Negative	Contact Material
7	PDMS	Negative	Active layer


Table S1. Triboelectric series: a list that rank various materials used for the SBP-TENG electrical studies, according to their tendency to lose electrons (positive) and gain (negative).

No	Device	Application	Mode of operation	Active layer	Contact material	Voc	I _{sc}	Area	Ref
1	TESM	Self-Powered High- Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real- Time Tactile Mapping	Single electrode (Contact and separation)	PDMS	Aluminum	17 V	150 nA	1 cm ²	1
2	TF- TENG	Transparent and Flexible Self- Charging Power Film and Its Application in a Sliding Unlock System in Touchpad Technology	Sliding mode	FEP	Human finger	31.5 V	224 nA		2
3	BD- TENG	Biodegradable triboelectric nanogenerator as a life-time designed implantable power source	Contact and separation	BDP1	BDP1	40 V	1 μΑ	6 cm ²	3
4	KFE	Personalized Keystroke Dynamics for Self- Powered Human Machine Interfacing	Contact and separation	FEP	Human finger	26.8V	23.5 μΑ		4
5	SR- based TENG	Stretchable-Rubber- Based Triboelectric Nanogenerator and Its Application as Self-Powered Body Motion Sensors	Sliding motion	Rubber	Aluminum	65 V	7.5 μA m ⁻²	29.04 cm ²	5
6	HMI	Triboelectrification Based Motion Sensor for Human- Machine Interfacing	Contact and separation	PDMS	Human Skin	42.6 V	0.2 μΑ		6
7	SS- TENG	Human Interactive Triboelectric Nanogenerator as a Self-Powered Smart Seat	Contact and separation	Kapton film	News Paper	13 V	1.75 μΑ	25 cm ²	7
8	SBP- TENG	Sustainable Freestanding Biomechanical Energy Harvesting Smart Back Pack as a Portable- Wearable Power Source	Contact and separation	PDMS	Wool	142 V	5.9 µA	12 Cm ²	Present work


 Table S2. Comparison of the proposed SBP-TENG with other reports

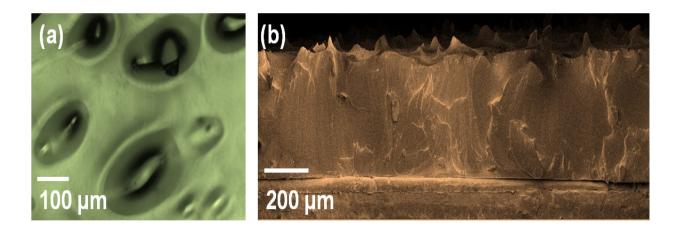
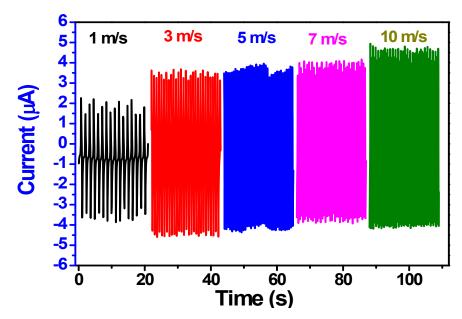
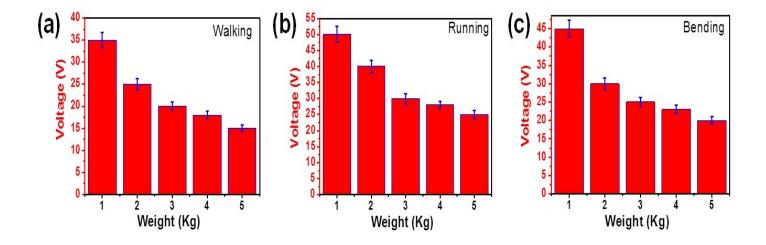
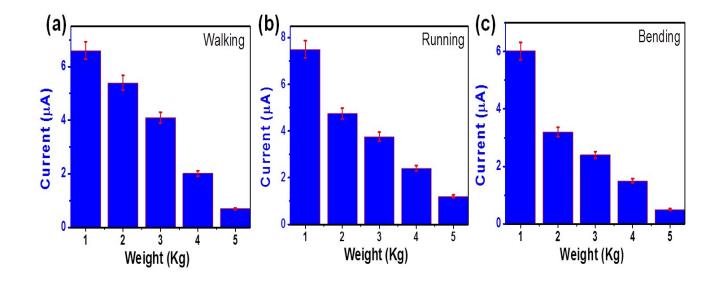
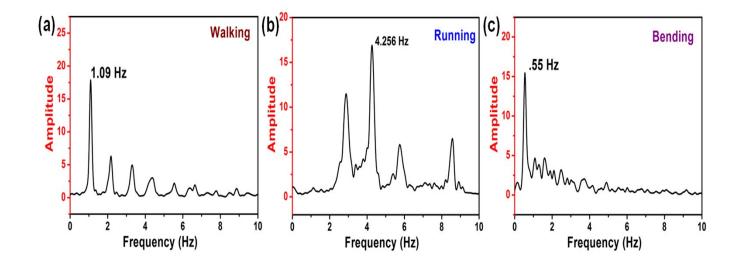

Figure S1. (a-e) Photograph of surface treated ABS plastic petri dish with acetone at different timing (10 - 120 sec). (f-j) Photograph of surface modified PDMS after solidification. (k-o) Top view FE-SEM image of surface modified PDMS.

Figure S2. (a-d) Top view FE-SEM image of positively charged triboelectric contact materials: polyethylene, jeans, paper and wool.

Figure S3. Stability test of SBP-TENG (a) Short circuit current. The inset shows an enlarged view of the electrical response at the end of the stability test and (inset).

Figure S4. (a) Top view FE-SEM image of PDMS film (peeled from120 sec treated perti dish) and (b) its cross-sectional view.


Figure S5. Short circuit current obtained during various force applied on the SBP-TENG.

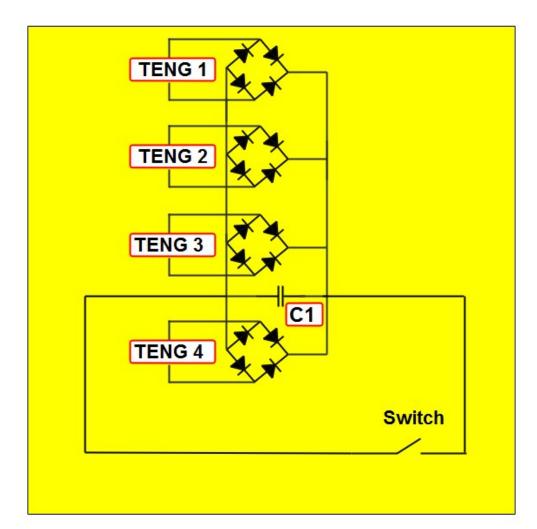

Figure S6. (a-c) Output voltage with respect to different human motion (walking, running and bending) *vs* different bag weight with error limits of real time bio-mechanical energy.

Figure S7. (a-c) Output current with respect to different human motion (walking, running and bending) *vs* different bag weight with error limits of real time bio-mechanical energy.

Figure S8. (a-c) the frequency components after Fourier transformed of the harvested voltage during human motion (walking, running and bending).

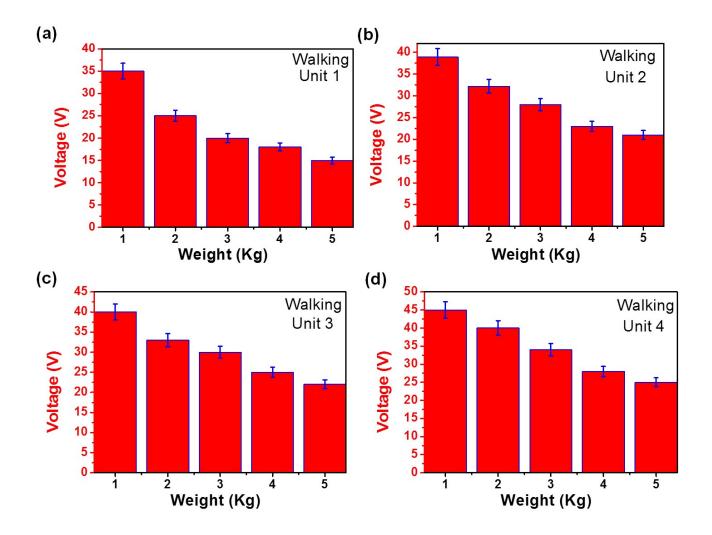


Figure S9. Capacitor charging circuit using multi unit-SBP-TENG

Figure S10. (a-d) Output voltage of multi-unit SBP-TENG with respect to walking motion *vs* different bag weight with error limits of real time bio-mechanical energy.

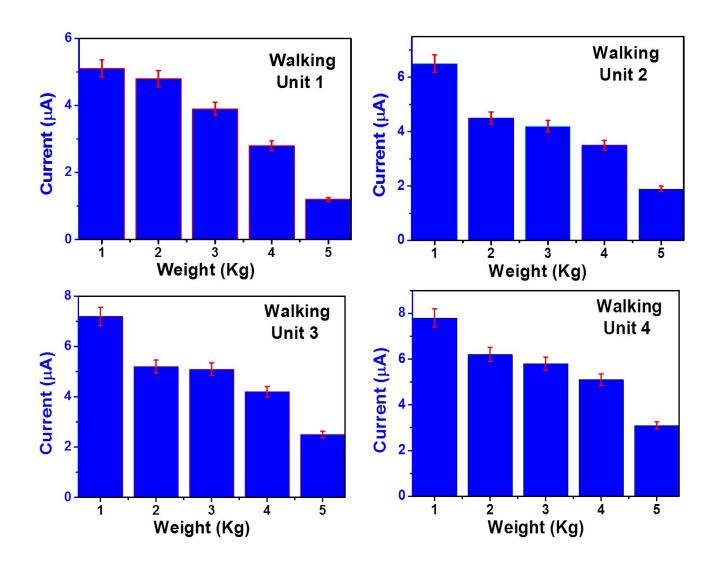


Figure S11. (a-d) Output current of multi-unit SBP-TENG with respect to walking motion vs

Different bag weight with error limits of real time bio-mechanical energy.

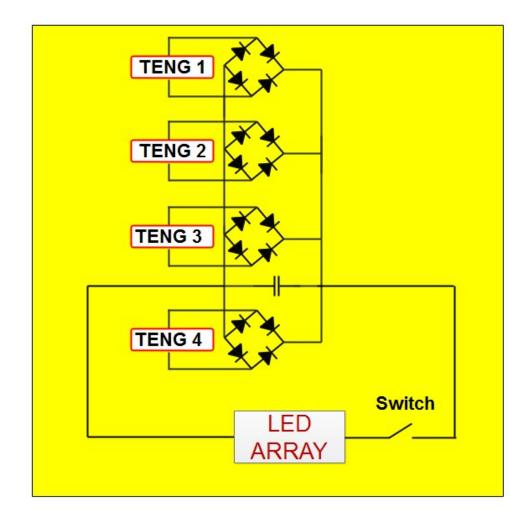


Figure S12. Self-powered emergency LED light switching circuit

References

- X. Wang, H. Zhang, L. Dong, X. Han, W. Du, J. Zhai, C. Pan and Z. L. Wang, *Adv. Mater.*, 2016, 28, 2896–2903.
- J. Luo, W. Tang, F. R. Fan, C. Liu, Y. Pang, G. Cao and Z. L. Wang, ACS Nano, 2016, 10, 8078–8086.
- Q. Zheng, Y. Zou, Y. Zhang, Z. Liu, B. Shi, X. Wang, Y. Jin, H. Ouyang, Z. Li and Z. L.
 Wang, *Sci. Adv.*, 2016, 2.
- J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su and Z. L. Wang, *ACS Nano*, 2015, 9, 105–116.
- F. Yi, L. Lin, S. Niu, P. K. Yang, Z. Wang, J. Chen, Y. Zhou, Y. Zi, J. Wang, Q. Liao, Y.
 Zhang and Z. L. Wang, *Adv. Funct. Mater.*, 2015, 25, 3688–3696.
- W. Yang, J. Chen, X. Wen, Q. Jing, J. Yang, Y. Su, G. Zhu, W. Wu and Z. L. Wang, ACS
 Appl. Mater. Interfaces, 2014, 6, 7479–84.
- A. Chandrasekhar, N. R. Alluri, B. Saravanakumar, S. Selvarajan and S. J. Kim, ACS Appl.
 Mater. Interfaces, 2016.