Supporting Information

A family of doped lanthanide metal-organic frameworks for

wide-range temperature sensing and tunable white light

emission

Yan Yang,^{a,b} Lian Chen,*^a Feilong Jiang,^a Muxin Yu,^{a,b} Xiuyan Wan,^a Bo Zhang,^{a,b} and Maochun Hong*^a

^aState Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. ^bUniversity of the Chinese Academy of Sciences, Beijing, 10049, China

Contents

Fig. S1 The coordinated environment of Gd³⁺ ion in compound GdL.

Fig. S2 The coordination mode of $[L]^{4-}$ in **GdL**: μ_{4-} bridging mode.

Fig. S3 1D metal-chain $[Gd_2(\mu_2 \text{-}COO)_2]_n$ in **GdL**.

Fig. S4 The TGA curves of EuL, GdL and TbL.

Fig. S5 PXRD patterns of EuL, GdL, TbL and all mixed lanthanide MOFs.

Fig. S6 (a) The X-ray thermodiffractogram of GdL. (b) PXRD patterns of GdL after exposed to open air containing H₂O vapor for 1 day, 2 days, 3 days, 5 days and 7 days. Fig. S7 Solid-state luminescent spectra of the ligand H₄L (excitation: dot, λ_{em} = 412 nm; emission: solid, λ_{ex} = 341 nm) at room temperature.

Fig. S8 Solid-state luminescent spectra of (a) EuL and (b) TbL at room temperature.

Fig. S9 The luminescence decay curves for (a) EuL and (b) TbL at room temperature. Fig. S10 Solid-state emission spectra of (a) EuL and (b) TbL recorded between 77 K and 450 K excited at 335 nm. (c) Temperature-dependent normalized emission intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (612 nm) for EuL and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions (542 nm) for TbL. (d) Temperature-dependent lifetimes of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (612 nm) for TbL excited at 335 nm.

Fig. S11 The phosphorescence spectra of compound [Me₂NH₂][GdL(H₂O)₂] (**GdL**) at 77 K.

Fig. S12 – **S14** (a) Solid-state emission spectra of $\mathbf{Eu}_{\mathbf{x}}\mathbf{Tb}_{\mathbf{1-x}}\mathbf{L}$ (x = 0.060, 0.047, 0.035) recorded between 77 K and 450 K. (b) Temperature-dependent normalized emission intensity of the ${}^{5}\mathbf{D}_{4} \rightarrow {}^{7}\mathbf{F}_{5}$ and ${}^{5}\mathbf{D}_{0} \rightarrow {}^{7}\mathbf{F}_{2}$ transitions of $\mathbf{Eu}_{\mathbf{x}}\mathbf{Tb}_{\mathbf{1-x}}\mathbf{L}$ (x = 0.060, 0.047, 0.035).

Fig. S15 CIE-1931 chromaticity diagrams showing the luminescent colors of the binary mixed $\mathbf{Eu_x Tb_y L}$ (x=0.060, 0.047, 0.035) at different temperatures from 77 K to 450 K. Fig. S16 (a) Solid-state emission spectra of $\mathbf{Eu_{0.0089} Tb_{0.9911} L}$ recorded between 77 K and 450 K excited at 335 nm. (b) Temperature-dependent normalized emission intensity of the ${}^5D_4 \rightarrow {}^7F_5$ and ${}^5D_0 \rightarrow {}^7F_2$ transitions of $\mathbf{Eu_{0.0089} Tb_{0.9911} L}$. (c) Temperature-dependent intensity ratio of Tb³⁺ (542 nm) to Eu³⁺ (612 nm) for binary mixed $Eu_{0.0089}Tb_{0.9911}L$ at different temperatures from 77 to 450 K. (d) CIE-1931 chromaticity diagram showing the luminescent colors of the binary mixed $Eu_{0.0089}Tb_{0.9911}L$.

Fig. S17 (a) Solid-state emission spectra of $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ recorded between 77 K and 450 K excited at 335 nm. (b) Temperature-dependent normalized emission intensity of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$. (c) Temperature-dependent intensity ratio of Tb³⁺ (542 nm) to Eu³⁺ (612 nm) for ternary mixed $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ at different temperatures from 77 to 450 K. (b) CIE-1931 chromaticity diagram showing the luminescent colors of the ternary mixed $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$.

Fig. S18 Comparison of the temperature-dependent intensity ratio (I_{Tb}/I_{Eu}) of $Eu_{0.0089}Tb_{0.9911}L$, $Eu_{0.0066}Tb_{0.9934}L$, $Eu_{0.013}Tb_{0.060}Gd_{0.927}L$, $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ and temperature-dependent intensity of Tb^{3+} (542 nm) for TbL.

Fig. S19 The relative thermometric sensitivity values for mixed LnMOFs $Eu_{0.0089}Tb_{0.9911}L$, $Eu_{0.0066}Tb_{0.9934}L$, $Eu_{0.013}Tb_{0.060}Gd_{0.927}L$ and $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ determined from the curves plotting of I_{Tb}/I_{Eu} vs. temperature.

Fig. S20 Temperature-dependent lifetimes of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (612 nm) and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions (542 nm) for the ternary mixed (a) Eu_{0.013}Tb_{0.060}Gd_{0.882}L and (b) Eu_{0.033}Tb_{0.085}Gd_{0.882}L between 77 K and 450 K excited at 335 nm.

Scheme S1. Simplified schematic diagram of the ligand–metal energy transfer in the ternary mixed lanthanide MOFs, Eu_{0.013}Tb_{0.060}Gd_{0.882}L and Eu_{0.033}Tb_{0.085}Gd_{0.882}L

Fig. S21 Solid-state emission spectrum of the $Eu_{0.0062}Tb_{0.0087}Gd_{0.9851}L$ at room temperature excited at 335 nm.

Fig. S22 Solid-state emission spectrum of the $Eu_{0.0062}Tb_{0.0087}Gd_{0.9851}L$ at room temperature excited at (a) 350 nm, (b) 355 nm, (c) 360 nm, (d) 365 nm, (e) 370 nm, (f) 375 nm.

Table S1. The original ratios of different lanthanide metal salts and the corresponding ICP results.

Table S2. The parameters containing composition, temperature ranges (K), maximum relative sensitivity values (S_m , % K⁻¹), the temperature at which S_m is maximum (T_m , K) of several selected ratiometric luminescent MOF thermometers.

Table S3. Crystal data and refinement results for EuL, GdL and TbL.

Table S4. Selected bond lengths (Å) and bond angles (°) for EuL, GdL and TbL.

Fig. S1 The coordinated environment of Gd^{3+} ion in compound GdL.

Fig. S2 The coordination mode of $[L]^{4-}$ in **GdL**: μ_4 -bridging mode.

Fig. S3 1D metal-chain $[Gd_2(\mu_2.COO)_2]_n$ in **GdL**.

Fig. S4 TGA curve of EuL, GdL and TbL.

Fig. S5 (a) PXRD patterns of the as-synthesized EuL (red), GdL (green) and TbL (blue). (b) PXRD patterns of all the mixed Eu_xTb_{1-x}L and Eu_xTb_yGd_{1-x-y}L.

Fig. S6 (a) The X-ray thermodiffractogram of **GdL**. (b) PXRD patterns of **GdL** after exposed to open air containing H₂O vapor for 1 day, 2 days, 3 days, 5 days and 7 days.

Fig. S7 Solid-state luminescent spectra of the ligand H₄L (excitation: dot, λ_{em} = 412 nm; emission: solid, λ_{ex} = 341 nm) at room temperature.

Fig. S8 Solid-state luminescent spectra of (a) EuL (excitation: dot, λ_{em} = 612 nm; emission: solid, λ_{ex} = 335 nm) and (b) TbL (excitation: dot, λ_{em} = 542 nm; emission: solid, λ_{ex} = 335 nm) at room temperature.

Fig. S9 The luminescence decay curves for (a) EuL by monitoring the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition (612 nm) excited at 335 nm and (b) TbL by monitoring the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition (542 nm) excited at 335 nm at room temperature. The scattering points are the experimental data and the solid lines are the fitting results.

Fig. S10 Solid-state emission spectra of (a) **EuL** and (b) **TbL** recorded between 77 K and 450 K excited at 335 nm. (c) Temperature-dependent normalized emission intensity of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (612 nm) for **EuL** and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions (542 nm) for **TbL**. (d) Temperature-dependent lifetimes of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (612 nm) for **EuL** and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (612 nm) for **EuL** and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (612 nm) for **EuL** and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions (612 nm) for **EuL** and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions (542 nm) for **TbL** excited at 335 nm.

Fig. S11 The phosphorescence spectra of compound $[Me_2NH_2][GdL(H_2O)_2]$ (GdL) at 77 K. The ligand-centered triplet state T_1 was calculated from the shortest wavelength emission edge of the phosphorescence spectrum of compound $[Me_2NH_2][GdL(H_2O)_2]$

(GdL) at 77 K. The phosphorescence spectrum of GdL reveals that the triplet state energy level T_1 of the ligand is 23753 cm⁻¹ (421 nm).

Fig. S12 (a) Solid-state emission spectra of $Eu_{0.060}Tb_{0.94}L$ recorded between 77 K and 450 K excited at 335 nm. (b) Temperature-dependent normalized emission intensity of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of $Eu_{0.060}Tb_{0.94}L$.

Fig. S13 (a) Solid-state emission spectra of $Eu_{0.047}Tb_{0.953}L$ recorded between 77 K and 450 K excited at 335 nm. (b) Temperature-dependent normalized emission intensity of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of $Eu_{0.047}Tb_{0.953}L$.

Fig. S14 (a) Solid-state emission spectra of Eu_{0.035}Tb_{0.965}L recorded between 77 K and

450 K excited at 335 nm. (b) Temperature-dependent normalized emission intensity of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of $Eu_{0.035}Tb_{0.965}L$.

Fig. S15 CIE-1931 chromaticity diagram showing the luminescent colors of the binary mixed Eu_xTb_yL (x=0.060, 0.047, 0.035, 0.0066) at different temperatures from 77 K to 450 K.

Fig. S16 (a) Solid-state emission spectra of $Eu_{0.0089}Tb_{0.9911}L$ recorded between 77 K and 450 K excited at 335 nm. (b) Temperature-dependent normalized emission intensity of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of $Eu_{0.0089}Tb_{0.9911}L$. (c) Temperaturedependent intensity ratio of Tb³⁺ (542 nm) to Eu³⁺ (612 nm) for binary mixed $Eu_{0.0089}Tb_{0.9911}L$ at different temperatures from 77 to 450 K. (d) CIE-1931 chromaticity

diagram showing the luminescent colors of the binary mixed Eu_{0.0089}Tb_{0.9911}L.

Fig. S17 (a) Solid-state emission spectra of $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ recorded between 77 K and 450 K excited at 335 nm. (b) Temperature-dependent normalized emission intensity of the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ and ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$. (c) Temperature-dependent intensity ratio of Tb³⁺ (542 nm) to Eu³⁺ (612 nm) for ternary mixed $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ at different temperatures from 77 to 450 K. (d) CIE-1931 chromaticity diagram showing the luminescent colors of the ternary mixed $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$.

Fig. S18 Comparison of the temperature-dependent intensity ratio (I_{Tb}/I_{Eu}) of $Eu_{0.0089}Tb_{0.9911}L$, $Eu_{0.0066}Tb_{0.9934}L$, $Eu_{0.013}Tb_{0.060}Gd_{0.927}L$, $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ and temperature-dependent intensity of Tb^{3+} (542 nm) for TbL.

Fig. S19 The relative thermometric sensitivity values for mixed LnMOFs $Eu_{0.0089}Tb_{0.9911}L$, $Eu_{0.0066}Tb_{0.9934}L$, $Eu_{0.013}Tb_{0.060}Gd_{0.927}L$ and $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ determined from the curves plotting of I_{Tb}/I_{Eu} vs. temperature.

Fig. S20 Temperature-dependent lifetimes of the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions (612 nm) and ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transitions (542 nm) for the ternary mixed (a) $Eu_{0.013}Tb_{0.060}Gd_{0.882}L$ and (b) $Eu_{0.033}Tb_{0.085}Gd_{0.882}L$ between 77 K and 450 K excited at 335 nm.

Scheme S1. Simplified schematic diagram of the ligand–metal energy transfer in the ternary mixed lanthanide MOFs (S_0 is the ground state of the ligand; S_1 and T_1 are the singlet state and triplet state of the ligand, respectively.).

Fig. S21 Solid-state emission spectrum of the $Eu_{0.0062}Tb_{0.0087}Gd_{0.9851}L$ at room temperature excited at 335 nm.

Fig. S22 Solid-state emission spectra of the $Eu_{0.0062}Tb_{0.0087}Gd_{0.9851}L$ at room temperature excited at (a) 350 nm, (b) 355 nm, (c) 360 nm, (d) 365 nm, (e) 370 nm, (f) 375 nm.

Table S1. The original ratios of different lanthanide metal salts and the correspondingICP results.

	Experimental			ICP Results				
Eu _x Tb _y L	Eu(x)			Tb(y)	Eu(x)		Tb(y)	
Eu _{0.060} Tb _{0.94} L	0.1			0.9	0.060		0.94	
Eu _{0.047} Tb _{0.953} L	0.08			0.92	0.047		0.953	
Eu _{0.035} Tb _{0.965} L	0.05			0.95	0.035		0.965	
Eu _{0.0089} Tb _{0.9911} L	0.02			0.98	0.0089		0.9911	
Eu _{0.0066} Tb _{0.9934} L	0.01			0.99	0.0066		0.9934	
$Eu_{x}Tb_{y}Gd_{1-x-y}L$	Eu(x)	Tb(y)	Gd(1-x-y)	Eu(x)	Tb(y)	Gd(1-x-y)
$Eu_{0.033}Tb_{0.085}Gd_{0.882}L$	0.03	0.0	7	0.90	0.033	0.08	5	0.882
Eu _{0.013} Tb _{0.060} Gd _{0.927} L	0.01	0.04	45	0.945	0.013	0.06	0	0.927
$Eu_{0.0062}Tb_{0.0087}Gd_{0.9851}L$	0.005	0.00)5	0.99	0.0062	0.008	7	0.9851

Table S2. The parameters containing composition, temperature ranges (K), maximum relative sensitivity values (S_m , % K⁻¹), the temperature at which S_m is maximum (T_m , K) of several selected ratiometric luminescent MOF thermometers.

Luminescent M'LnMOF Thermometers	Temperature range (K)	S _m (% K ⁻¹)	$T_{m}(K)$	Ref.
Eu _{0.0069} Tb _{0.9931} -DMBDC	50 - 200	1.15	200	7d
Tb _{0.9} Eu _{0.1} -PIA	100 - 300	3.27	300	4a
Tb _{0.98} Eu _{0.02} -OA-DSTP	77 - 275	2.4	275	
Tb _{0.98} Eu _{0.02} -BDC-DSTP	77 - 225	2.8	225	21c
Tb _{0.99} Eu _{0.01} -BDC-DSTP	77 - 200	3.9	200	
$[Eu_{0.102}Tb_{0.898}(notpH_4)(NO_3)(H_2O)]\cdot 8H_2O$	18 - 300	3.9	38	21d
Tb	10 - 325	5.96	25	21e
0.914				
Eu				
0.086				
-PDA				
Tb				
0.914				
Eu				
0.086				
-PDA				
Tb				
0.914				
Eu				
0.086				
–PDA				
$Tb_{0.914}Eu_{0.086}$ -PDA				
$\frac{1}{Eu_{0.2}Tb_{0.8}L}$		0.15		
$Eu_{0.1}Tb_{0.9}L$	40 - 300	0.11	300	22a
$Eu_{0.3}Tb_{0.7}L$		0.17		
(Eu1Tb99-HFA)@LA	197 - 287	1.107	287	22b
ZJU-88⊃perylene	293.15 - 353.15	1.28	193.15	22c
$Tb_{0.957}Eu_{0.043}cpda$	40 - 300	1.77	250	22d
d-U(600)-Eu _{0.25} Tb _{0.75} (btfa) ₃ (bpeta)	10 - 330	4.9	150	22e
Tb _{0.99} Eu _{0.01} (BDC) _{1.5} ·(H2O) ₂	298 - 320	0.31	318	20b

Eu _{0.0089} Tb _{0.9911} L	77-450	2.71	450	This work
Eu _{0.0066} Tb _{0.9934} L	77-450	3.76	450	This work
$Eu_{0.033}Tb_{0.085}Gd_{0.882}L$	77-450	3.62	400	This work
$Eu_{0.013}Tb_{0.060}Gd_{0.927}L$	77-450	6.11	430	This work

DMBDC = 2,5-dimethoxy-1,4-benzenedicarboxylate, HPIA = 5-(pyridin-4-yl)isophthalic acid, H₂DSTP = 2,4-(2,2':6',2"-terpyridin-4'-yl)-benzenedisulfonic acid, OA = oxalic acid, BDC = 1,4benzene dicarboxylic acid, notpH₆ = 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid), PDA = 1,4-phenylenediacetic acid, L = 1,3-bis(4-carboxyphenyl)imidazolium, cpda = 5-(4-carboxyphenyl)- 2,6-pyridinedicarboxylate, HFA = hexafluoroacetylacetone, ZJU-88 = [Eu₂(QPTCA)(NO₃)₂(DMF)₄]·(CH₃CH₂OH)₃ (H₄QPTCA = 1,1':4',1'':4'',1'''-quaterphenyl-3,3''', 5,5'''-tetracarboxylic acid), H₃cpda = 5-(4-carboxyphenyl)-2,6-pyridinedicarboxylic acid, bpeta = 1,2-bis(4-pyridyl)ethane.

	EnL	CdL	ThL
F 1			
Formula	$C_{23}H_{21}EuN_2O_{10}$	$C_{23}H_{21}GdN_2O_{10}$	$C_{23}H_{21}TbN_2O_{10}$
Formula weight	637.39	642.68	652.36
Crystal system	orthorhombic	orthorhombic	orthorhombic
space group	Pnma	Pnma	Pnma
<i>a</i> (Å)	8.5023 (2)	8.5011 (3)	8.5052 (5)
<i>b</i> (Å)	17.3319 (4)	17.2958 (5)	17.3256 (4)
<i>c</i> (Å)	12.1180 (3)	12.0726 (3)	12.0864 (3)
α (°)	90	90	90
β (°)	90	90	90
γ (°)	90	90	90
Volume (Å ³)	1785.72 (7)	1775.08 (9)	1781.02 (7)
T (K)	100	100	100
Ζ	4	4	4
F (000)	1140	1144	1148
$R_1(I \ge 2\sigma(I))$	0.0360	0.0467	0.0382
wR ₂ (reflections)	0.1488	0.1064	0.1014
Goodness of fit on F^2	1.214	1.157	1.071

 Table S3. Crystal data and refinement results for EuL, GdL and TbL.

Bond	Dist.	Bond	Dist.
Eu1—O6 ⁱ	2.355 (3)	Eu1—O4	2.450 (5)
Eu1—O6 ⁱⁱ	2.355 (3)	Eu1—O4 ^v	2.450 (5)
Eu1—O3 ⁱⁱⁱ	2.394 (4)	Eu1—O2	2.465 (5)
Eu1—O3 ^{iv}	2.394 (4)	Eu1—O1	2.547 (4)
Angle	(°)	Angle	(°)
O6 ⁱ —Eu1—O6 ⁱⁱ	125.4 (2)	O4—Eu1—O4v	71.3 (2)
O6 ⁱ —Eu1—O3 ⁱⁱⁱ	74.31 (14)	O6i—Eu1—O2	65.67 (11)
O6 ⁱⁱ —Eu1—O3 ⁱⁱⁱ	137.57 (14)	O6ii—Eu1—O2	65.67 (11)
O6 ⁱ —Eu1—O3 ^{iv}	137.57 (14)	O3iii—Eu1—O2	137.92 (11)
O6 ⁱⁱ —Eu1—O3 ^{iv}	74.31 (14)	O3iv—Eu1—O2	137.92 (11)
O3 ⁱⁱⁱ —Eu1—O3 ^{iv}	69.14 (18)	O4—Eu1—O2	109.38 (14)
O6 ⁱ —Eu1—O4	143.52 (14)	O4v—Eu1—O2	109.38 (14)
O6 ⁱⁱ —Eu1—O4	76.63 (14)	O6i—Eu1—O1	73.52 (10)
O3 ⁱⁱⁱ —Eu1—O4	110.42 (12)	O6ii—Eu1—O1	73.52 (10)
O3 ^{iv} —Eu1—O4	71.80 (12)	O3iii—Eu1—O1	78.87 (11)
$O6^{i}$ —Eu1—O4 ^v	76.63 (14)	O3iv—Eu1—O1	78.87 (11)
O6 ⁱⁱ —Eu1—O4 ^v	143.52 (14)	O4—Eu1—O1	142.66 (12)
O3 ⁱⁱⁱ —Eu1—O4 ^v	71.80 (12)	O4v—Eu1—O1	142.66 (12)
O3 ^{iv} —Eu1—O4 ^v	110.42 (12)	O2—Eu1—O1	77.90 (16)

Table S4. Selected bond lengths (Å) and bond angles (°) for EuL, GdL and TbL.

Symmetry codes: (i) 1-x, -1/2+y, 1-z; (ii) 1-x, 1-y, 1-z; (iii) x, 1/2-y, z; (iv) 1/2+x, y,

3/2-z; (v) 1/2+x, 1/2-y, 3/2-z.

Bond	Dist.	Bond	Dist.
Gd1—O6 ⁱ	2.322 (6)	Gd1—O3	2.425 (5)
Gd1—O6 ⁱⁱ	2.322 (6)	Gd1—O3 ^v	2.425 (5)
Gd1—O4 ⁱⁱⁱ	2.367 (6)	Gd1—01	2.465 (10)
Gd1—O4 ^{iv}	2.367 (6)	Gd1—O2	2.517 (6)
Angle	(°)	Angle	(°)
O6 ⁱ —Gd1—O6 ⁱⁱ	123.0 (4)	O3—Gd1—O3 ^v	71.5 (2)
O6 ⁱ —Gd1—O4 ⁱⁱⁱ	138.8 (2)	06 ⁱ —Gd1—O1	64.3 (2)
O6 ⁱⁱ —Gd1—O4 ⁱⁱⁱ	75.5 (3)	O6 ⁱⁱ —Gd1—O1	64.3 (2)
$O6^{i}$ — $Gd1$ — $O4^{iv}$	75.5 (3)	O4 ⁱⁱⁱ —Gd1—O1	137.7 (2)
O6 ⁱⁱ —Gd1—O4 ^{iv}	138.8 (2)	O4 ^{iv} —Gd1—O1	137.7 (2)
O4 ⁱⁱⁱ —Gd1—O4 ^{iv}	69.6 (3)	O3—Gd1—O1	108.7 (2)
O6 ⁱ —Gd1—O3	143.2 (2)	O3v—Gd1—O1	108.7 (2)
O6 ⁱⁱ —Gd1—O3	76.9 (2)	O6 ⁱ —Gd1—O2	73.72 (16)
O4 ⁱⁱⁱ —Gd1—O3	72.21 (19)	O6 ⁱⁱ —Gd1—O2	73.72 (16)
O4 ^{iv} —Gd1—O3	111.2 (2)	O4 ⁱⁱⁱ —Gd1—O2	78.32 (18)
O6 ⁱ —Gd1—O3 ^v	76.9 (2)	O4 ^{iv} —Gd1—O2	78.32 (18)
O6ii—Gd1—O3v	143.2 (2)	O3—Gd1—O2	142.59 (13)
O4iii—Gd1—O3v	111.2 (2)	O3v—Gd1—O2	142.59 (13)

O4iv—Gd1—O3v 72.21 (19) O1—Gd1—O2

Symmetry codes: (i) 1-x, -1/2+y, 1-z; (i	i) 1-x, 1-y, 1-z; (i	ii) x, 1/2-y, z; (iv	/) 1/2+x, y,
3/2-z; (v) 1/2+x, 1/2-y, 3/2-z.			

Bond	Dist.	Bond	Dist.
Tb1—O6 ⁱ	2.339 (4)	Tb1—O3 ^{iv}	2.434 (4)
Tb1—O6 ⁱⁱ	2.339 (4)	Tb1—O3 ^v	2.434 (4)
Tb1—O4	2.366 (4)	Tb1—O1	2.462 (7)
Tb1—O4 ⁱⁱⁱ	2.366 (4)	Tb1—O2	2.522 (5)
Angle	(°)	Angle	(°)
O6 ⁱ —Tb1—O6 ⁱⁱ	123.5 (3)	O3 ^{iv} —Tb1—O3 ^v	71.55 (19)
O6 ⁱ —Tb1—O4	138.66 (16)	O6 ⁱ —Tb1—O1	64.64 (14)
O6 ⁱⁱ —Tb1—O4	75.04 (17)	O6 ⁱⁱ —Tb1—O1	64.64 (14)
O6 ⁱ —Tb1—O4 ⁱⁱⁱ	75.04 (17)	O4—Tb1—O1	137.75 (13)
O6 ⁱⁱ —Tb1—O4 ⁱⁱⁱ	138.66 (16)	O4 ⁱⁱⁱ —Tb1—O1	137.75 (13)
O4—Tb1—O4 ⁱⁱⁱ	69.9 (2)	O3 ^{iv} —Tb1—O1	108.31 (16)
O6 ⁱ —Tb1—O3 ^{iv}	143.11 (14)	O3 ^v —Tb1—O1	108.31 (16)
O6 ⁱⁱ —Tb1—O3 ^{iv}	76.68 (14)	O6 ⁱ —Tb1—O2	73.61 (11)
O4—Tb1—O3 ^{iv}	72.33 (13)	O6 ⁱⁱ —Tb1—O2	73.61 (11)
O4 ⁱⁱⁱ —Tb1—O3 ^{iv}	111.46 (13)	O4—Tb1—O2	78.59 (12)
O6 ⁱ —Tb1—O3 ^v	76.68 (14)	O4 ⁱⁱⁱ —Tb1—O2	78.59 (12)
O6 ⁱⁱ —Tb1—O3 ^v	143.11 (14)	O3 ^{iv} —Tb1—O2	142.72 (10)
O4—Tb1—O3 ^v	111.46 (13)	O3 ^v —Tb1—O2	142.72 (10)
O4 ⁱⁱⁱ —Tb1—O3 ^v	72.33 (13)	O1—Tb1—O2	78.5 (2)

Symmetry codes: (i) 1-x, -1/2+y, 1-z; (ii) 1-x, 1-y, 1-z; (iii) x, 1/2-y, z; (iv) 1/2+x, y,

3/2-z; (v) 1/2+x, 1/2-y, 3/2-z.