Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

High efficiency planar Sn-Pb binary perovskite solar cells: Controlled

growth of large grains via one-step solution fabrication process

Lingang Li^{*a*}, Fan Zhang^{*a*}, Yuying Hao^{*a**}, Qinjun Sun^{*a*}, Zhanfeng Li^{*a*}, Wang Hua^{*b*}, Yanxia Cui^{*a*}, Furong Zhu^{*c*}

^aKey Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.

^bKey Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, China.

^c Department of Physics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong

*Corresponding authors. E-mail addresses: haoyuyinghyy@sina.com

Figure S1 Schematic illustration of the fabrication procedure of MASn_xPb_(1-x)I₃ perovskite films

Sample	$V_{ m oc}$ (V)	$J_{\rm sc}~({\rm mA/cm^2})$	FF (%)	PCE (%)	Maximum
					PCE (%)
CH ₃ NH ₃ PbI ₃	0.91 ± 0.00	16.71 ± 0.90	0.52 ± 0.04	7.93 ± 0.48	8.49
$CH_{3}NH_{3}Sn_{0.15}Pb_{0.85}I_{3} \\$	0.67 ± 0.02	18.40 ± 1.89	0.53 ± 0.03	6.51 ± 0.52	7.39
$CH_{3}NH_{3}Sn_{0.25}Pb_{0.75}I_{3} \\$	0.80 ± 0.01	21.03 ± 0.43	0.67 ± 0.02	11.24 ± 0.39	11.63
$CH_{3}NH_{3}Sn_{0.35}Pb_{0.65}I_{3} \\$	0.75 ± 0.02	21.03 ± 1.72	0.60 ± 0.02	9.37 ± 0.46	10.05
CH ₃ NH ₃ SnI ₃	0.06 ± 0.05	0.02 ± 0.03	0.28 ± 0.08	0.00 ± 0.00	0.00

Table S1 The results of the cell parameters averaged from the measurements for more than 10 MASn_xPb_{1-x}I₃ PSCs with different Sn contents in the Sn-Pb binary perovskite layer, e.g., x = 0, 0.15, 0.25, 0.35 and 1

Figure S2 Average V_{OC} (a), J_{SC} (b), FF (c) and PCE (d) of MASn_xPb_{1-x}I₃-based cells with different Sn contents in the MASn_xPb_{1-x}I₃ layer, e.g., x = 0, 0.15, 0.25, 0.35 and 1

Figure S3 EDS elemental mapping of different MASn_xPb_{1-x}I₃ films having different Sn contents, e.g., x = 0.15(a), 0.25 (b), and 0.35 (c)

Figure S4 Log-linear plots of dark current density-voltage characteristics measured for the Sn-Pb binary PSCs having different Sn Contents in the $MASn_xPb_{1-x}I_3$ layers, with.g., x = 0.15, 0.25, and 0.35.

Table S2 The statistical photovoltaic parameters averaged from measurements for more than 10 MASn_xPb_{1-x}I₃ PSCs fabricated with different solvent annealing

$CH_{3}NH_{3}Sn_{0.25}Pb_{0.75}I_{3}$	$V_{ m oc}$ (V)	$J_{\rm sc}~({\rm mA/cm^2})$	FF (%)	PCE (%)	Maximum PCE (%)
N ₂ (DMF)	0.80 ± 0.01	21.03 ± 0.43	0.67 ± 0.02	11.24 ± 0.39	11.63
N ₂ (out of DMF)	0.73 ± 0.03	19.83 ± 0.68	0.56 ± 0.01	8.14 ± 0.34	8.56
Air (DMF)	0.65 ± 0.05	1.67 ± 0.38	0.45 ± 0.09	0.37 ± 0.22	0.64

Figure S5 Histograms of J_{SC}, V_{OC}, FF, and PCE of 30 MASn_{0.25}Pb_{0.75}I₃-based PSCs

Figure S6 Evolution of J-V characteristics (a) and PCE (b) of $MASn_{0.25}Pb_{0.75}I_3$ -based PSCs as a function of the storage time under atmospheric environment

storage time	Voc (V)	$J_{\rm sc}$ (mA/cm ²)	FF (%)	PCE (%)
0h	0.80	21.61	0.66	11.41
1h	0.80	21.31	0.64	10.89
2h	0.80	20.48	0.61	9.91
15h	0.77	18.01	0.49	8.35

Table S3 The evolution of cell parameters obtained for $MASn_{0.25}Pb_{0.75}I_3$ PSCs with different storage periods under atmospheric environment