Anomalous spontaneous-reduction of Mn⁷⁺/Mn⁴⁺ to Mn²⁺ and

luminescence properties in Zn₂GeO₄:Mn

J. Q. Hu#, E. H. Song#, S. Ye, B. Zhou and Q. Y. Zhang¹⁾

State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangzhou 510641, China

Table S1 The synthesis information of Zn_{2-x}GeO₄:xMn²⁺.

Mn source	synthetic temperature (°C)	Mn content (x)
MnCO ₃	800/1000/1100/1200/1300 (6 h)	0.02
MnCO ₃	1300(6 h)	0.005-0.07
MnCO ₃ /MnO ₂ /KMnO ₄	800/1300(6 h)	0.03

Table S2 The synthesis information of other germanates.

Host	synthetic temperature (°C)	Mn source	Mn content (x)
Li ₂ ZnGeO ₄	1200 (6 h)	MnCO ₃ /MnO ₂ /KMnO ₄	0.01
Li ₂ MgGeO ₄	1200 (6 h)	MnCO ₃ /MnO ₂ /KMnO ₄	0.01
Na_2MgGeO_4	1100 (6 h)	MnCO ₃ /MnO ₂ /KMnO ₄	0.01
Na_2ZnGeO_4	1100 (6 h)	MnCO ₃ /MnO ₂ /KMnO ₄	0.01

¹⁾ Author to whom correspondence should be addressed; Email:<u>qyzhang@scut.edu.cn</u> #Dual Contributors

Fig. S1 The standard XRD pattern of Zn_2GeO_4 and measured XRD patterns of Zn_2GeO_4 :0.03Mn²⁺ phosphor with different Mn-sources (MnCO₃, MnO₂ and KMnO₄) prepared at 1300 and 800 °C, respectively, for 6 h in air condition.

Fig. S2 XPS spectra for Mn 2p region in Zn_2GeO_4 :Mn samples synthesized by using different Mn-sources (MnCO₃, MnO₂ and KMnO₄).

Fig. S3 (a) The standard XRD patterns of Li_2ZnGeO_4 , Li_2MgGeO_4 , Na_2ZnGeO_4 , Na_2MgGeO_4 and measured XRD patterns of the corresponding phosphors prepared *via* a high temperature solid-state reaction method. The crystal structures of (b) Li_2ZnGeO_4 , (c) Li_2MgGeO_4 , (d) Na_2ZnGeO_4 , and Na_2MgGeO_4 have the same structure as Na_2ZnGeO_4 .

Fig. S4 PL spectra of (a) $Li_2ZnGeO_4:Mn^{2+}$, (b) $Li_2MgGeO_4:Mn^{2+}$, (c) $Na_2MgGeO_4:Mn^{2+}$, and (d) $Na_2ZnGeO_4:Mn^{2+}$ phosphors prepared by using KMnO₄ as Mn source.