Supporting Information

Novel bonding patterns and optoelectronic properties of the two-dimensional Si_xC_y monolayers

Dong Fan,^a Shaohua Lu,^{a*} Yundong Guo^b and Xiaojun Hu^{a*}

a. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
b. School of Engineering and Technology, Neijiang Normal University, Neijiang, 641000, China.
*E-mail: lsh@zjut.edu.cn; huxj@zjut.edu.cn **Table S1** | Calculated lattice constants, bond lengths, and cohesive energy ofthe predicted low-energy 2D SiC monolayers at GGA (PBE) level.

	Lattice constant Å	Bond lengths Å	Property	Cohesive energy eV/atom
Graphene	a=b=2.46	C-C 1.42	DF	7.94
L-SiC ₄	a= 6.25 b=2.45 buckling 0.95	Si-Si 2.45 Si-C 1.89 C- C 1.42	DF	6.91
δ- silagraphyne	a=6.26 b=4.10	Si-C 1.77 & 1.85 C-C 1.34 & 1.26	SM	6.55
g-SiC ₂	a=b=5.02	Si-C 1.80 C-C 1.45	DB	6.46 ^a
L-SiC ₂	a= 2.48 b=8.58 buckling 0.63	Si-Si 2.48 Si-C 1.97 C- C 1.42	IDB	6.20
α- silagraphyne	a=b=8.25	Si-C 1.76 C-C 1.24	DF	6.09
<i>pt</i> -SiC	a=2.86, b=3.88	Si-C 1.92 C-C 1.33	М	6.04 ^b
ß- silagraphyne	a=b=11.78	Si-Si 2.20 Si-C1.78 C- C1.24	DF	5.84
O-Si ₂ C ₃	a=6.79 b=3.06	Si-C 1.75 C-C 1.33	SM	5.81
t-SiC	a=3.67 b=3.21 buckling 1.42	Si-C 1.92 & 1.87	DB	5.55
γ- silagraphyne	a=b=9.27 buckling 0.48	Si-Si 2.23 Si-C 1.79 C- C 1.23	DS	5.36
L- silagraphyne	a=5.03 b=7.24 buckling 0.65	Si-Si 2.28 Si-C 1.86 & 1.73 C-C 1.35 &1.25	SM	5.35
t-Si ₂ C	a=2.79 b=9.09	Si-Si 2.44 Si-C 1.89	SM	4.85
T- silagraphyne	a=3.17 b=10.58	Si-C 1.82 C-C 1.40 & 1.24	IDB	4.50
Silicene	a=b=3.87	Si-Si 2.28	DF	3.93

* DF: Dirac Fermions. DB: Direct band gap.

DB: Direct band gap. IDB: Indirect band gap.

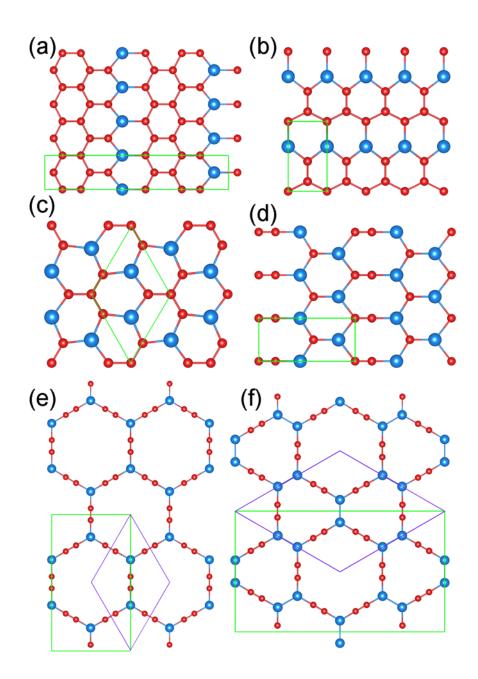
- * SM: Semi-metallic. M: metallic
- * a: Ref.[17] b:Ref.[16]

Table S2 | Calculated elastic constants, in-plane stiffness and Poisson'scoefficients for predicted low-energy 2D SiC monolayers.*1

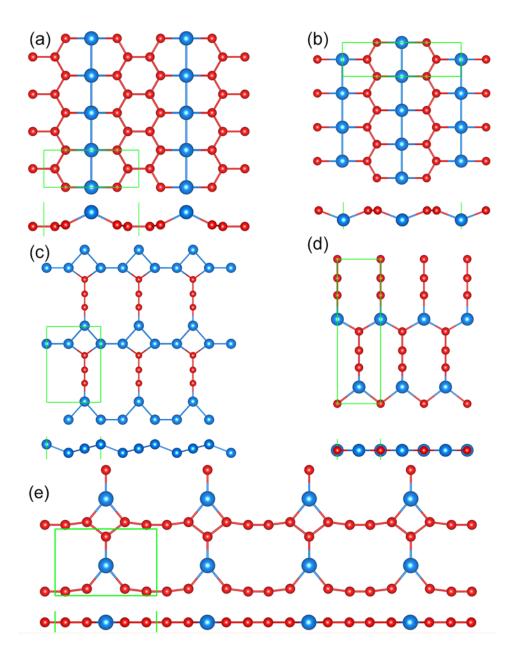
	C ₁₁ / GPa	C ₂₂ / GPa	C ₁₂ / GPa	C ₆₆ / GPa	In-plane stiffness/ GPa•nm	Poisson's ratio
Graphene	358	358	65	147	346.73	0.18
Silicene	69	69	22	23	61.88	0.32
t-SiC	152	123	22	95	$105(\mathbf{a})^{*2}119(\mathbf{b})^{*2}$	0.18(a)0.14(b)
t-Si ₂ C	153	173	24	60	150(a)169(b)	0.14(a)0.16(b)
L-SiC ₄	121	292	12	67	121(a)291(b)	0.04(a)0.10(b)
L-SiC ₂	254	139	7	49	253(a)139(b)	0.05(a)0.03(b)
O-Si ₂ C ₃	219	125	46	26	202(a)115(b)	0.37(a)0.21(b)

^{*1}: Calculated by equations in Reference: Zhang, S., et al. PNAS, 112.8(2015):2372-7. where C_{11} , C_{12} , C_{21} and C_{22} represent elastic contacts (GPa) calculated by VASP.

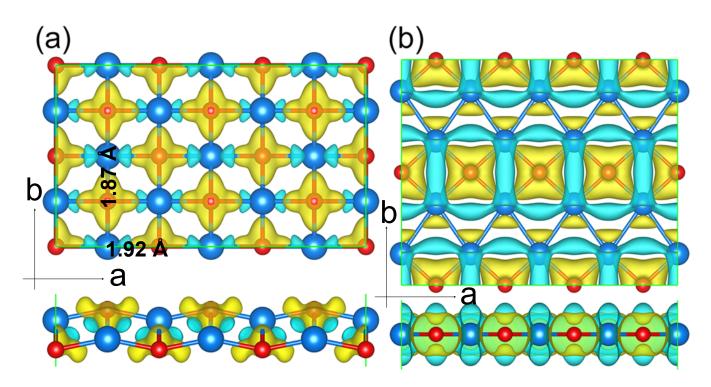
*2: a direction and b direction of 2D BC compounds.

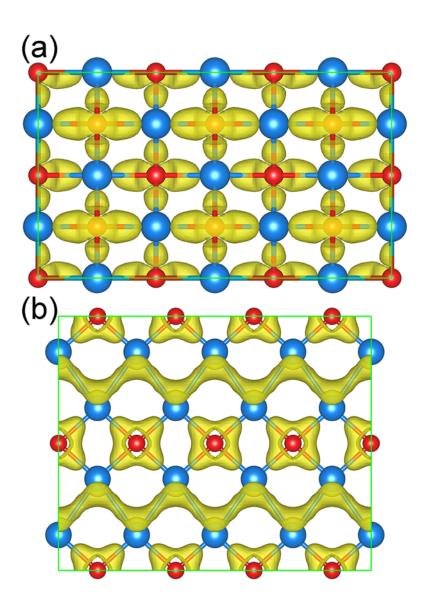

Table S3 | Calculated elastic constants, in-plane stiffness and Poisson'scoefficients for predicted low-energy 2D SiC monolayers.

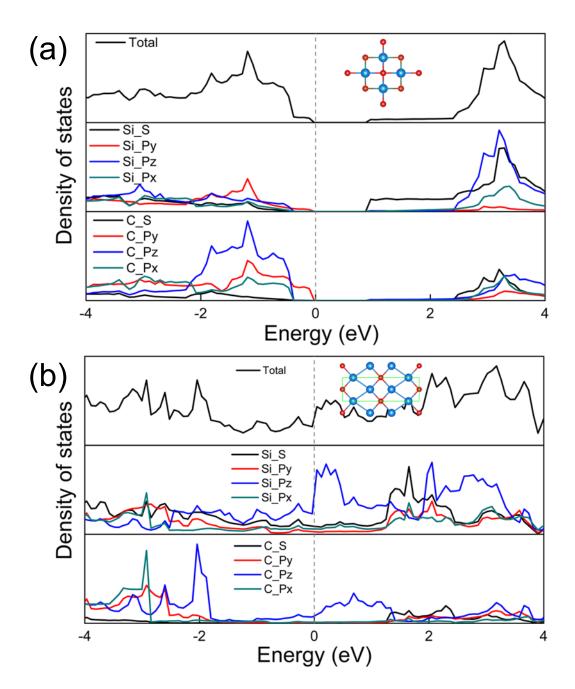
	C11/ GPa	C ₂₂ / GPa	C ₁₂ / GPa	C66/ GPa	In-plane stiffness/ GPa•nm	Poisson's ratio
α-graphyne	96	96	81	7	27.03(21.00 ^{ref1})	$0.85(0.88^{refl})$
ß-graphyne	130	130	88	21	70.80(73.07 ^{ref2})	$0.68(0.67^{ref2})$
γ-graphyne	196	196	83	56	160.25(162.1 ^{ref3})	$0.43(0.429^{ref3})$
α-silagraphyne	61	61	55	3	17.00	0.89
ß-silagraphyne	68	68	53	8	26.36	0.78
γ-silagraphyne	76	76	47	15	47.55	0.61
δ-silagraphyne	253	105	32	7	243(a)101(b)	0.30(a)0.13(b)
T-silagraphyne	95	242	35	9	90(a)229(b)	0.14(a)0.37(b)
L-silagraphyne	39	87	9	1	38(a)84(b)	0.10(a)0.23(b)

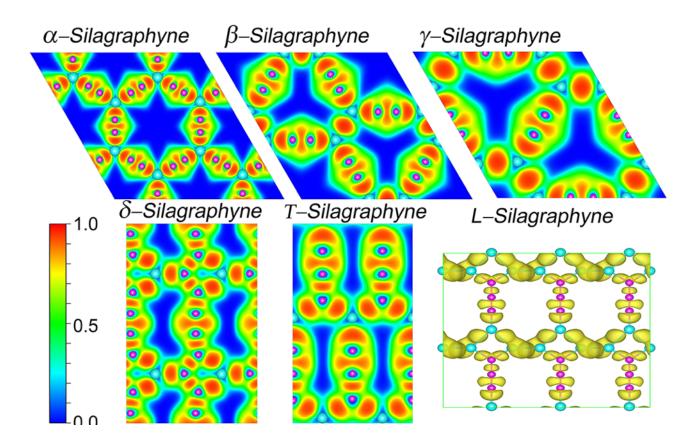

Ref¹: Journal of Physical Chemistry C 117.5 (2013): 2175-2182.

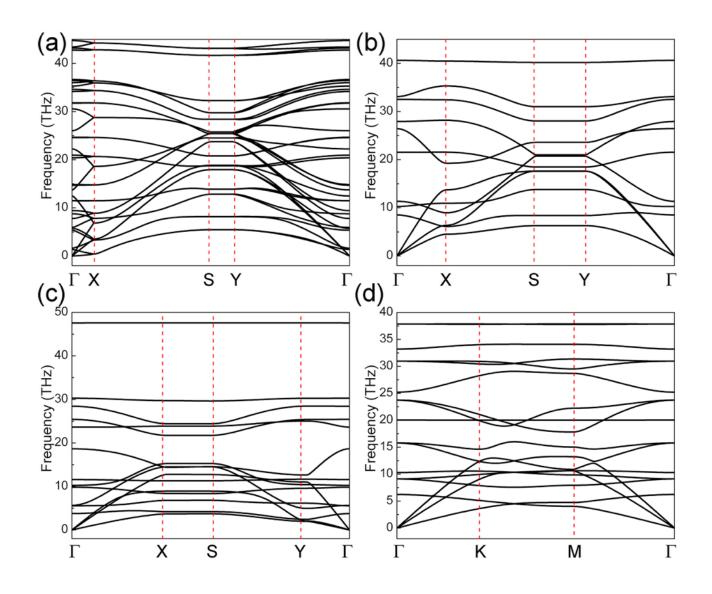
Ref²:Carbon 96 (2016): 879-887.

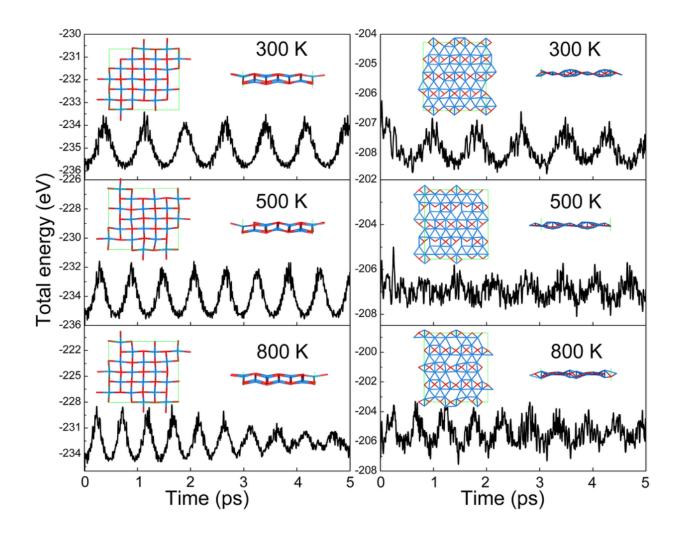

Ref³: Physical Chemistry Chemical Physics 14.38 (2012): 13385-13391.

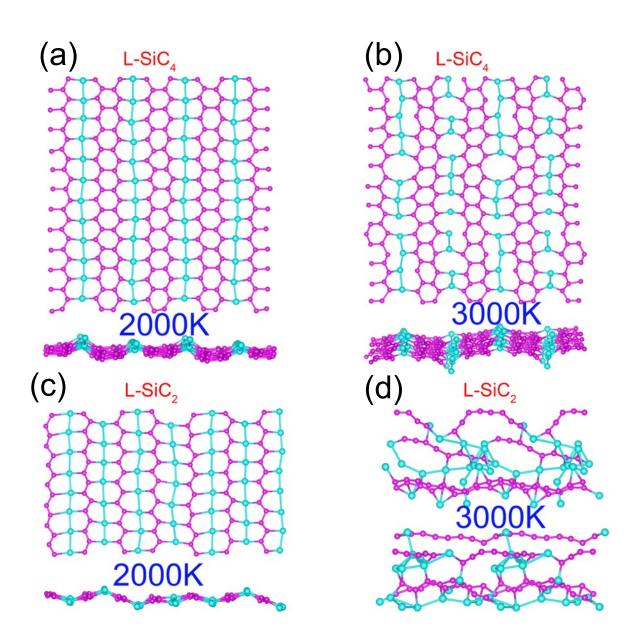

Fig S1 | Crystal structure of *h*-SiC₅, *h*-SiC₃, *h*-SiC₂, O-Si₂C₃, α -silagraphyne and β -silagraphyne from top view. The blue and red balls represent Si and C atoms, respectively. The green lines denote a unit cell.

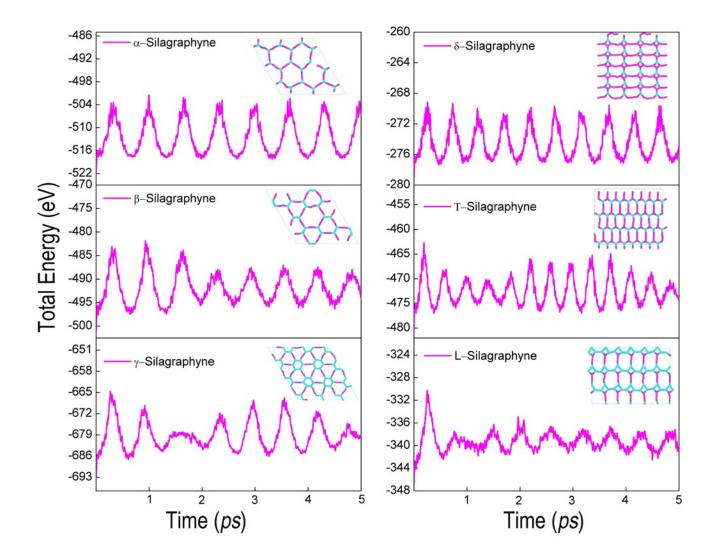

Fig S2 | Top (upper) and side (lower) views of geometric structure of (a) L-SiC₄, (b)L-SiC₂, (c)L-silagraphyne ,(d) T-silagraphyne and (e) δ -silagraphyne. The green lines denote a unit cell. The blue and red balls represent Si and C atoms, respectively.

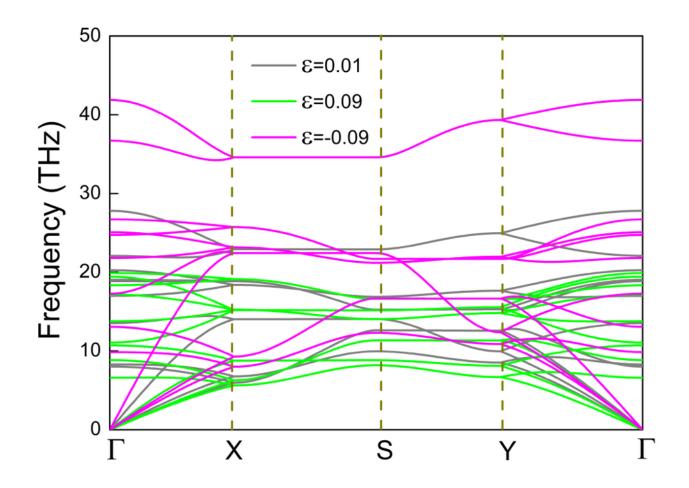

Fig S3 | Deformation charge density of (a) *t*-SiC and (b) *t*-Si₂C monolayer. Yellow and blue refer to electron accumulation and depletion regions, respectively. The blue and red balls represent Si and C atoms, respectively. The isosurface value is 0.02 and 0.005 e/au. The transferred electrons mainly originated from the Si atoms of *t*-SiC. The Si-C bond length in the buckled structure is 1.92 and 1.87 Å along **a** and **b** direction, due to the different degree of the localization of electronic states on Si-C bonds.

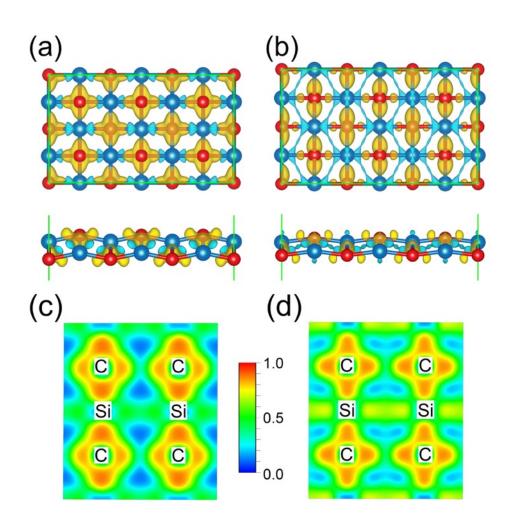

Fig S4 | Isosurfaces of electron location function plotted with the value of 0.80 and 0.75 au for *t*-SiC and *t*-Si₂C monolayer, respectively.

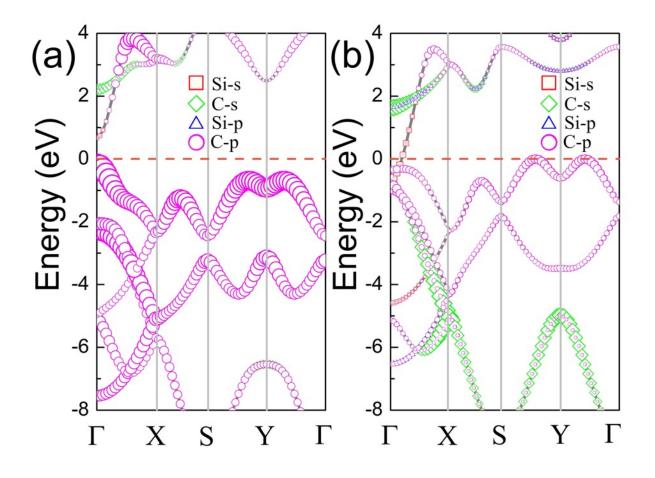

Fig S5 | Computed Partial density of states for (a) *t*-SiC and (b) t-Si₂C sheets. Calculated at the PBE level of theory and the vertical dashed lines denote the Fermi level.


Fig S6 | Calculated ELF of different silagraphyne. The cyan and pink balls represent Si and C atoms, respectively. For L-silagraphyne, the isosurface value is set as 0.75.


Fig S7 | Phonon band structures of (a) h-SiC₅ (b) h-SiC₃ (c) h-SiC₂ and (d) O-Si₂C₃ silagraphene calculated by linear response theory. Γ (0, 0, 0), X (1/2, 0, 0), S (1/2, 1/2, 0), Y (0, 1/2, 0) and K(-1/3, 2/3, 0) represent the symmetry points in the first Brillouin zone in reciprocal space.


Fig S8 | Energy fluctuation of *t*-SiC (left) and *t*-Si₂C (right) with respect to time in AIMD simulations at different temperature. Inset drawing shows the the final geometrical structure of each AIMD simulation (top and side views).


Fig S9 | Snapshots of the final frame of each AIMD simulation from 2000 to 3000 K (top and side views).


Fig S10 | Energy fluctuation of proposed Silagraphyne sheets with respect to time in AIMD simulations at 1000K. Inset drawing shows the the final geometrical structure of each AIMD simulation at 1000K.

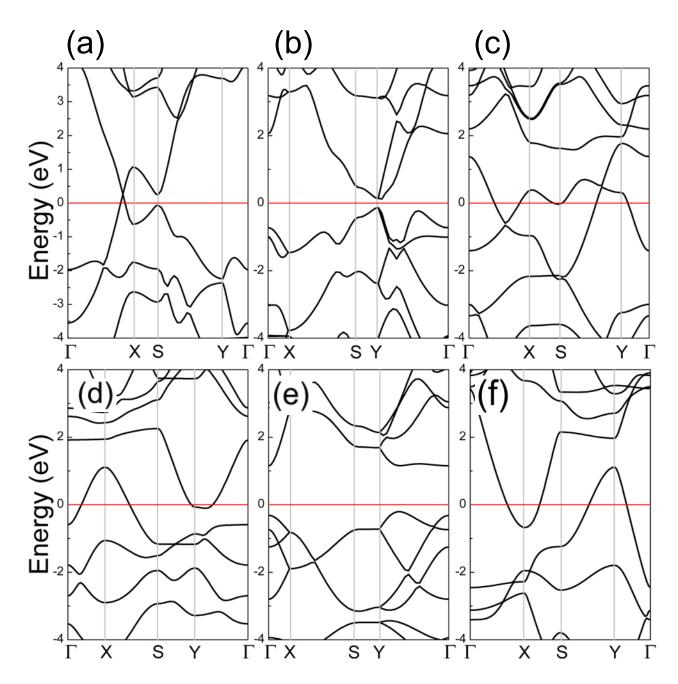

Fig S11 | Phonon dispersion curve for biaxial strained *t*-SiC sheet calculated by linear response theory. Γ (0, 0, 0), X (1/2, 0, 0), S (1/2, 1/2, 0) and Y (0, 1/2, 0) represent the symmetry points in the first Brillouin zone in reciprocal space.

Fig S12 | Deformation charge density of (a) 0% strained *t*-SiC and (b) 10% strained *t*-SiC monolayer. Yellow and blue refer to electron accumulation and depletion regions, respectively. The blue and red balls represent Si and C atoms, respectively. The isosurface value is 0.02 and 0.015 e/au. (c, d) Corresponding ELF maps. The cyan and pink balls represent Si and C atoms, respectively. The isosurface value is set as 0.75.

Fig S13 | The calculated the orbital-resolved band structures of (a) no-strained *t*-SiC and (b) 10% strained *t*-SiC at PBE level of theory. The dots are the contributions from the corresponding atomic orbital of Si or C atoms. Larger dot means higher contribution while smaller one indicates lower contribution.

Fig S14 | The calculated band structure of (a) L-SiC, (b)L-SiC₂ (c) O-Si₂C₃, (d) T-silagraphyne, (e) L-silagraphyne and (f) δ -silagraphyne at GGA/PBE level. The Fermi level is set to zero and marked by red lines. The accurate band gap determination provided by the HSE06 method.