Supporting Information

Tuning of electronic properties via labile $N \rightarrow B$ coordination in conjugated organoboranes

Sandra Schraff, Yu Sun, Frank Pammer*

Contents

1.	E>	(peri	mental Section	4		
:	1.1.	Ma	aterials and Instrumentation	4		
:	1.2.	Sv	nthetic Procedures	5		
	1.	2.1.	Preparation of 1,4-dibromo-2,5-bis(trimethylsilylethynyl)benzene (S1)	5		
	1.	2.2.	Preparation of 1,4-Bis(dimesitylboryl)-2,5-bis(trimethylsilylethynyl)-benzene (B2-TMS)	6		
	1.	2.3.	Preparation of 1,4-Diethynyl-2,5-bis(dimesitylboryl)benzene (B2-H) ⁹	7		
1.2		P.4. Preparation of 1,4-Bis(dimesitylboryl)-2,5-(Bis(1-(p-tolyl)-1H-1,2,3-triazol-4-yl))ben		/le)7		
	1.	2.5.	Preparation of 1,4-Bis(dimesitylboryl)-2,5-(Bis(1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl))benz			
	(Т	rz-OM	le)	8		
	1.	2.6.	Preparation of 1,4-Bis(dimesitylboryl)-2,5-(Bis(1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4			
	yl))benz	ene (Trz-CF ₃)	9		
	1.	2.7.	Preparation of Polymer PTrz	10		
2	c.	ماممر	montony Analytical Data	17		
Ζ.	31	ibbie	mentary Analytical Data	12		
	2.1.	Ele	ectrochemical and Uv-vis-spectroscopic Data	12		
		Figure	e S1. Cyclic voltammogram of B2-TMS .	12		
		Figure	e S2. Cyclic voltammogram of PTrz	12		
		Figure	e S3. Cyclic voltammogram of PTrz . Recorded as dip-coated film on a platinum electrode	13		
		Figure	e S4. UV-vis absorption (solid) and emission (dashed) spectra of B2-H in THF solution	13		
		Figure	e S5. Deconvolution of the UV-vis absorption spectrum of B2-TMS	14		
		Figure	e S6. Deconvolution of the UV-vis absorption spectrum of B2-H	14		
		Figure	e S7. Deconvolution of the UV-vis absorption spectrum of Trz-CF ₃	14		
		Figure	e S8. Deconvolution of the UV-vis absorption spectrum of Trz-Me	15		
		Figure	e S9. Deconvolution of the UV-vis absorption spectrum of Trz-OMe	15		
		Figure	e S10. Deconvolution of the UV-vis absorption spectra of PTrz in THF	15		
		Figure	e S11. Fluorescence lifetimes of Trz-CF ₃ , Trz-OMe, and Trz-Me	16		
		Figure	e S12. Normalized absorption and fluorescence spectra of Trz-OMe at variable temperatures	16		
		Figure	e S13. Normalized absorption and fluorescence spectra of Trz-CF ₃ at variable temperatures	16		
:	2.2.	¹¹ B	3 NMR Spectra	17		
		Figure	e S14. ¹¹ B NMR-spectrum of Trz-CF ₃ in THF-d ₈	17		
		Figure	e S15. ¹¹ B NMR-spectrum of Trz-CF ₃ in THF-d ₈ after addition of TBACN	17		
		Figure	e S16. ¹¹ B NMR-spectra of Trz-Me in THF-d ₈ .	18		

	Figure S17. ¹¹ B NMR-spectrum of Trz-OMe in THF-d ₈ .	18
	Figure S18. ¹¹ B NMR-spectrum of PTrz in THF-d ₈	19
2.3	Dynamic ¹ H NMR Experiments	19
	.3.1. ΔG^{\dagger} estimate from T _c	19
	Table S1. ΔG^{\dagger} according to dynamic NMR experiments.	20
	.3.2. Line shape analyses	20
	Figure S19. Eyring plot of Trz-OMe .	21
	Figure S20. Eyring plot of Trz-Me	21
	Figure S21. Eyring plot of Trz-CF ₃	22
	Chart S1. Signal assignment in dynamic NMR experiments	22
	Figure S22. Dynamic ¹ H NMR of Trz-CF ₃ in THF-d ₈ at 500 MHz	23
	Figure S23. Dynamic ¹ H NMR of Trz-OMe in THF-d ₈ at 500 MHz	24
	Figure S24. Dynamic ¹ H NMR of Trz-Me in THF-d ₈ at 500 MHz	25
2.4	NMR and MS Spectra	26
	Figure S25. ¹ H NMR-spectrum of B2-TMS in CDCl ₃	
	Figure S26. ¹³ C NMR-spectrum of B2-TMS in CDCl ₃	26
	Figure S27. HR-FTMS-spectrum of B2-TMS	27
	Figure S28. ¹ H NMR-spectrum of B2-H in CDCl ₃	28
	Figure S29. ¹³ C NMR-spectrum of B2-H in CDCl ₃ . #	28
	Figure S30. ¹ H NMR-spectrum of Trz-CF $_3$ in THF-d $_8$.	29
	Figure S31. ¹³ C NMR-spectrum of Trz-CF ₃ in THF-d ₈ .	29
	Figure S32. ¹ H NMR-spectrum of Trz-CF ₃ with TBACN in THF-d ₈	30
	Figure S33. HR-FTMS-spectrum of Trz-CF ₃	31
	Figure S34. ¹ H NMR-spectrum of Trz-Me in THF-d ₈	32
	Figure S35. ¹³ C NMR-spectrum of Trz-Me in THF-d ₈ .	32
	Figure S36. HR-FTMS-spectrum of Trz-Me	33
	Figure S37. ¹ H NMR-spectrum of Trz-OMe in THF-d ₈ .	34
	Figure S38. ¹³ C NMR-spectrum of Trz-OMe in THF-d ₈ .	34
	Figure S39. HR-FTMS-spectrum of Trz-OMe.	35
	Figure S40. ¹ H NMR-spectrum of PTrz in THF-d ₈	
	Figure S41. ¹³ C NMR-spectrum of PTrz in THF-d ₈	
	Figure S42. HR-FTMS-spectrum of PTrz .	
	Figure S43. Thermalgravimetric analysis of PTrz .	
3.	PFT Study	39
	Scheme S1. Simulated conformers of Trz-boranes.	
	Table S2. Calculated structural parameters for Trz-boranes.	
	Table S3. Calculated electronic properties of Trz-boranes.	40
	Figure S44. Calculated electronic transitions and corresponding simulated UV-vis spectra	41
	Table S4. Energies, oscillator strengths and orbital contributions of calculated electronic transiti	ons42
	Figure S45. Frontier orbital plots of <i>closed</i> conformers	48
	Figure S46. Frontier orbital plots of <i>closed</i> conformers.	49
	Figure S47. Frontier orbital plots of <i>open</i> conformers	50
	Figure S48. Frontier orbital plots of <i>open</i> conformers	51

3.1. Op	timized Structures	
3.1.1.	PTrz'	
3.1.2.	Trz-Me'	55
3.1.3.	Trz-OMe'	
3.1.4.	Trz-CF₃'	
3.1.5.	Transitional State Optimization	
4. Crystal	Data	
4.1. Trz	68	
4.2. B ₂ -	н	
5. Refere	nces	85

1. Experimental Section

1.1. Materials and Instrumentation

All reactions and manipulations of sensitive compounds were carried out under an atmosphere of pre-purified argon using either Schlenk techniques or an inert-atmosphere glovebox (MBraun Labmaster). Toluene, Et₂O, THF, DMF and dichloromethane were purified using a solvent purification system (MBraun; alumina / copper columns for hydrocarbon solvents). *N*-hexane, and benzene were dried by distillation from CaH₂ under argon atmosphere prior to use. Mes₂BF¹, different phenylazides² and 1,12-diazidododecane³ were prepared according to literature.

Other reagents were commercially available (Aldrich, Acros, Alfa Aesar) and were either used as obtained or purified by standard procedures.⁴ ¹H-, ¹³C-, ¹⁹F- and ¹¹B-NMR spectra were recorded at 293 K on a Bruker Avance DRX 400 (400 MHz) spectrometer or a Bruker Avance 500 AMX (500 MHz). Solution ¹H and ¹³C NMR spectra were referenced internally to the solvent residual signals.⁵ Solution ¹¹B-NMR spectra were recorded either on the Bruker Avance DRX 400 (400 MHz) spectrometer at the University of Ulm, or on a Bruker Avance III DPX 600 spectrometer at the Department of Inorganic Chemistry at the University of Heidelberg. ¹¹B-NMR spectra were referenced externally to BF₃·Et₂O (10% in CHCl₃). Individual signals are

referred to as singlet (s), doublet (d), triplet (t), multiplet (m), and broadened (br). Temperature calibration of the NMR spectrometer was performed using CH₃OH/CD₃OD (<298 K) and HOCH₂CH₂OH/DMSO-d₆ (>298 K).⁶ High resolution mass spectrometry measurements were performed on a Bruker SolariX FTMS using MALDI (Matrix Assisted Laser Desorption Ionization). Trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) was used as matrix in MALDI measurements. UV-visible absorption spectra and photoluminescence spectra were acquired on a Perkin Elmer Lambda 19 UV-vis/NIR spectrometer and a Perkin Elmer LS 55 fluorescence spectrometer, respectively. Fluorescence Lifetimes were measured on a HORIBA JOBIN YVON FluoroCube spectrometer equipped with a NanoLED light source and a TBX Picosecond Photon Detection Module. Elemental analyses were performed on an Elemental Vario EL analyzer. Melting points were measured on a Büchi M-565 melting point apparatus with a heating rate of 2 K/min. Cyclic voltammetry measurements were performed with an Autolab Potentiostat Galvanostat with a three electrode system, consisting of a Pt working electrode (0.785 mm²), a Pt-counter electrode, and an Ag/AgCl-reference electrode. The measurements were carried out in THF or NCMe with [N(n-Bu)₄][PF₆] (0.1 M) as supporting electrolyte, and were internally referenced against the ferrocene/ferrocenium redoxcouple. Thermal gravimetry measurements were recorded on a Mettler Toledo TGA/SDTA 851e, with an Alox70µL sample holder. Binding constants were determined by numerical fit of the UVvis absorption titration spectra using the program HypSpec2014[™] by Protonic Software (http://www.hyperquad.co.uk.). Deconvolution of UV-vis spectra was performed with Spekwin32free optical spectroscopy software, Version 1.71.5, 2010, http://www.effemm2.de/spekwin/. X-ray diffraction intensities were collected on an Agilent Technologies SuperNova single-crystal X-ray diffractometer at 150 K with Mo-Kα radiation. Crystal data and refinement parameters are collected in the Supporting Information. The structures were solved using direct methods (SIR92[ix] or Shlexs-2014[x]), completed by subsequent difference Fourier syntheses, and refined by full-matrix least-squares procedures. The crystallographic data for Trz-Me and B2-H has been deposited with the Cambridge Crystallographic Data Centre under CCDC 1521412 and CCDC 1521490. These data can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif.

1.2. Synthetic Procedures

1.2.1. Preparation of 1,4-dibromo-2,5-bis(trimethylsilylethynyl)benzene (S1)^{7,8}

Under an argon atmosphere 200 mL THF were added to 10.0 g (20.5 mmol) 1,4dibromo-2,5-diiodobenzene, CuI (602 mg, 3.16 mmol) und $(Ph_3P)_2PdCl_2$ (1.02 g, 1.46 mmol). After the addition of DIPA (13.0 mL, 92.5 mmol), the solution was stirred for 10 min and was then cooled to 0 °C. According to trimethylsilylacetylene (6.40 mL, 45.1 mmol) was added dropwise, the mixture was stirred at room temperature for 48 h. Then water and diluted HCI (5%) were added followed by the extraction with diethyl ether. The combined organic layer was washed twice with saturated ammonium chloride-solution, 5% HCl, 1 M NaHCO₃-solution and saturated NaCl-solution and subsequent dried over Na₂SO₄. After the solvents were removed under reduced pressure and the residue was purified by a column chromatography over silica gel (SiO₂, petroleum ether/ethylacetat 100/1). Further purification by recrystallization from isopropanol gave **S1** in 58% yield (5.10 g, 11.9 mmol) as a pale yellow solid.

¹H-NMR (400 MHz, CDCl₃): δ = 7.68 (s, 2 H, 3), 0.28 (s, 18 H, 6) ppm. ¹³C-NMR (100 MHz, CDCl₃): δ = 136.1 (3), 126.1 (2), 123.4 (1), 102.8 (4), 101.1 (5), -0.6 (6) ppm.

1.2.2. Preparation of 1,4-Bis(dimesitylboryl)-2,5-bis(trimethylsilylethynyl)-benzene (B₂-TMS)⁹

To a solution of 1,4-dibromo-2,5-bis(trimethylsilylethynyl)benzene (429 mg, 1.00 mmol) in 8.0 mL dry THF was added a *n*-hexane solution of *n*-BuLi (1.31 mL, 2.10 mmol) dropwise at -78 °C. The mixture was stirred at the same temperature for 20 min. A solution of dimesitylboron fluoride (600 mg, 2.24 mmol) in THF (3 mL) was added to the mixture via syringe. The reaction mixture was warmed to room temperature gradually and stirred for 14 h. After the solvents were

removed under reduced pressure, the resulting residue was suspended in *n*-hexane. The residue was separated through centrifugation (4000 U/5 min) and washed with diethyl ether to get 56% yield (431 mg, 562 μ mol) of a white-yellow solid.

¹H-NMR (400 MHz, CDCl₃): δ = 7.33 (s, 2 H, 3), 6.75 (s, 8 H, 9), 2.27 (s, 12 H, 12), 1.98 (s, 24 H, 11), -0.06 (s, 18 H, 6) ppm.

¹³C-NMR (100 MHz, CDCl₃): δ = 152.7 (1), 142.5 (8), 141.1 (7), 139.4 (10), 137.5 (3), 128.5 (9), 125.8 (2), 104.6 (4), 99.2 (5), 23.5 (11), 21.4 (12), -0.17 (6) ppm. mp 312.9-314.9 °C [Lit.: >300 °C]

MS (HR-MALDI, matrix: DCTB) for $C_{52}H_{64}B_2Si_2$: calc. m/z = 766.4733, found m/z = 766.4719([M⁺]).

1.2.3. Preparation of 1,4-Diethynyl-2,5-bis(dimesitylboryl)benzene (B₂-H)⁹

To a solution of 300 mg (391 µmol) **B**₂-**TMS** in 8.0 mL dry THF was added a suspension of TBAF·SiO₂ (7.82 g, ca. 11.7 mmol F⁻) in 11 mL THF. The mixture was stirred at room temperature for 17 h. The reaction mixture was filtered off and washed with THF. The resulting mixture was subjected to a silica gel column chromatography (petroleum ether/chloroform 2/1, $R_f = 0.75$) to afford 86% yield (208 mg, 335 mmol) of a white-yellow solid.

¹H-NMR (400 MHz, CDCl₃): δ = 7.40 (s, 2 H, 3), 6.75 (s, 8 H, 8), 2.74 (s, 2 H, 5), 2.28 (s, 12 H, 11), 2.00 (s, 24 H, 10) ppm.

¹³C-NMR (100 MHz, CDCl₃): δ = 153.2 (1), 142.5 (7), 141.1 (6), 139.6 (9), 137.9 (3), 128.3 (8), 125.2 (2), 83.2(4), 81.7(5), 23.3 (10), 21.4 (11) ppm.

1.2.4. Preparation of 1,4-Bis(dimesitylboryl)-2,5-(Bis(1-(p-tolyl)-1*H*-1,2,3-triazol-4yl))benzene (Trz-Me)

To a solution of 100 mg (87.1 μ mol) **B**₂-**H** in 13 mL dry THF were added 3.24 mg (5.59 μ mol, 15 mol%) Cul, 0.06 mL (345 μ mol) diisopropylethylamine (DIPEA) and 64.4 mg (211 μ mol) 4-azidotoluene. The mixture was stirred at 60-70 °C for 33 h, until repeated TLC control indicated that the reaction had come to completion.

Subsequently, the solvent was removed under reduced pressure, and the residue was purified by repeated washing with dry *n*-hexane and diethyl ether to afford **Trz-Me** in 29% (41.2 mg, 46.1 µmol) yield as colorless solid.

¹H-NMR (400 MHz, C₆D₆): δ = 8.23 (s, 2 H, 5), 6.99 (s, 8 H, 13), 6.82 (d, 4 H, ³*J*_{HH} = 8.5 Hz, 7/8), 6.87 (d, 4 H, ³*J*_{HH} = 8.5 Hz, 7/8), 6.36 (s, 2 H, 1), 2.48 (br, 24 H, 15), 2.25 (s, 12 H, 16), 1.94 (s, 6 H, 10) ppm.

¹H-NMR (400 MHz, THF-d₈): δ = 8.89 (s, 2 H, 5), 7.90 (s, 2 H, 1), 7.75 (d, 4 H, ³*J*_{HH} = 8.4 Hz, 7), 7.37 (d, 4 H, ³*J*_{HH} = 8.4 Hz, 8), 6.52 (s, 8 H, 13), 2.39 (s, 6 H, 10), 2.10 (s, 12 H, 16), 1.90 (br, 24 H, 15) ppm.

¹³C-NMR (100 MHz, THF-d₈): δ = 151.6 (4), 140.9 (9), 140.8 (12), 135.4 (9), 133.5 (14), 130.9 (8), 130.6 (3), 129.8 (13), 125.9 (1), 120.9 (7), 116.2 (5), 25.6 (15), 20.9 (10), 20.8 (16) ppm.

¹³C-resonances of carbon atoms directly bonded to boron could not be observed.

MS (HR-MALDI, matrix: DCTB) for $C_{60}H_{62}B_2N_6$: calc. m/z = 888.5222, found m/z = 888.5203 ([M+]). Also observed: ([M-Mes]+): calc. m/z = 769.4361, found m/z = 769.4350, ([M-CH₃]+): calc. m/z = 874.5066, found m/z = 874.5013.

1.2.5. Preparation of 1,4-Bis(dimesitylboryl)-2,5-(Bis(1-(4-methoxyphenyl)-1*H*-1,2,3-triazol-4-yl))benzene (Trz-OMe)

To a solution of 50.2 mg (80.6 μ mol) **B**₂-**H** in 6.0 mL dry THF were added 1.98 mg (10.4 μ mol) Cul, 27.1 mg (204 μ mol) 1azido-4-methoxybenzene and 0.04 mL (230 μ mol) DIPEA. The mixture was stirred at ambient temperature for several days, additional azide was then added and the mixture was heated to 70°C

overnight, until TLC control indicated that the reaction had come to completion. Subsequently, the solvent was removed under reduced pressure, and the residue was washed with dry *n*-hexane to afford **Trz-OMe** in 68% yield (50.0 mg, 54.2 μ mol) as a tanned solid.

¹H-NMR (400 MHz, C₆D₆): δ = 8.24 (s, 2 H, 5), 7.00 (s, 8 H, 13), 6.81 (d, 4 H, ³J_{HH} = 9.1 Hz, 7/8), 6.45 (d, 4 H, ³J_{HH} = 9.1 Hz, 7/8), 6.31 (s, 2 H, 1), 3.17 (s, 6 H, 10), 2.49 (br, 24 H, 15), 2.26 (s, 12 H, 16) ppm.

¹H-NMR (400 MHz, THF-d₈): $\delta = 8.80$ (s, 2 H, 5), 7.90 (s, 2 H, 1), 7.75 (d, 4 H, ³*J*_{HH} = 9.1 Hz, 7/8), 7.07 (d, 4 H, ³*J*_{HH} = 9.1 Hz, 7/8), 6.52 (s, 8 H, 13), 3.83 (s, 6 H, 10), 2.10 (s, 12 H, 16), 1.90 (br, 24 H, 15) ppm.

¹³C-NMR (100 MHz, THF-d₈): δ = 161.6 (9), 151.5 (4), 140.8 (12), 133.4 (14), 130.8 (6), 130.6 (3), 129.8 (13), 125.8 (1), 122.6 (7/8), 116.2 (5), 115.5 (7/8), 55.8 (10), 25.6 (15), 20.8 (16) ppm.

¹³C-resonances of carbon atoms directly bonded to boron could not be observed.

MS (HR-MALDI, matrix: DCTB) for $C_{60}H_{62}B_2N_6O_2$: calc. m/z = 920.5120, found m/z = 920.5120 ([M+]). Also observed: ([M-Mes]+): calc. m/z = 801.4260, found m/z = 801.4248, ([M-CH₃]+): calc. m/z = 906.4964, found m/z = 906.4905.

1.2.6. Preparation of 1,4-Bis(dimesitylboryl)-2,5-(Bis(1-(4-(trifluoromethyl)phenyl)-1*H*-1,2,3-triazol-4-yl))benzene (Trz-CF₃)

To a solution of 30.1 mg (48.4 μ mol) **B**₂-**H** in 3.9 mL dry THF, were added 1.23 mg (6.46 μ mol) Cul, 0.02 mL (115 F₃C μ mol) DIPEA and an initial amount of 43.4 mg (232 μ mol) 1-azido-4-(trifluormethyl)-benzene. The mixture was stirred at ambient temperature for several days, additional azide was then

added and the mixture was heated to 70°C for 21 h, until TLC control indicated that the reaction had come to completion. Subsequently, the solvent was removed under reduced pressure, and the resulting residue was washed with dry *n*-hexane to afford **Trz-CF**₃ in 81% yield (39.0 mg, 39.1 µmol) as a pale yellow solid.

¹H-NMR (400 MHz, C₆D₆): δ = 8.23 (s, 2 H, 5), 7.06 (d, 4 H, ³*J*_{HH} = 8.4 Hz 7/8), 7.00 (s, 8 H, 13), 6.70 (d, 4 H, ³*J*_{HH} = 8.4 Hz, 7/8), 6.28 (s, 2 H, 1), 2.45 (b, 24 H, 15), 2.25 (s, 12 H, 16) ppm.

¹H-NMR (400 MHz, THF-d₈): δ = 9.06 (s, 2 H, 5), 8.09 (d, 4 H, ³*J*_{HH} = 8.4 Hz, 7/8), 7.94 (s, 2 H, 1), 7.93 (d, 4 H, ³*J*_{HH} = 8.4 Hz, 7/8), 6.54 (s, 8 H, 13), 2.10 (s, 12 H, 16), 1.91 (br, 24 H, 15) ppm.

¹³C-NMR (100 MHz, THF-d₈): δ = 151.8 (4), 140.9 (12), 140.2 (9), 133.7 (14), 130.5 (3), 129.9 (13), 127.9 (7/8), 126.1 (1), 121.7 (7/8), 116.8 (5), 25.6 (15), 20.8 (16) ppm.

¹³C-resonances of carbon atoms directly bonded to boron could not be observed.

¹⁹F-NMR (125 MHz, C_6D_6): δ = -62.4 ppm.

MS (HR-MALDI, matrix: DCTB) for $C_{60}H_{56}B_2F_6N_6$: calc. m/z = 996.4657, found m/z = 996.4651 ([M+]). Also observed: ([M-Mes]+): calc. m/z = 877.3796, found m/z = 877.3787, ([M-CH₃]+): calc. m/z = 982.4500, found m/z = 982.4445.

1.2.7. Preparation of Polymer PTrz

To a solution of 20.0 mg (33.7 μ mol) **B**₂-**H** and 8.50 mg (33.7 μ mol) of 1,12diazidododecane in 2.0 mL of dry toluene were added 100 μ L of a 25 mM 1:1 solution of CuI and PMDETA in dry THF. The reaction mixture was stirred at 60 °C for 3 d

and for another 20 h at 100 °C, and was subsequently poured into petroleum ether to precipitate the product. The colorless participate were filtered off and washed with petroleum ether, diethyl ether, and acetonitrile. The residue was then taken up in DCM, filtered, and evaporated to dryness to give 18.0 mg (61%) of a colorless solid.

GPC (CHCl₃ vs. PS): $M_n = 7.2$ kDa; PDI = 2.1 ¹H-NMR (400 MHz, THF-d₈): $\delta = 8.17$, 7.78, 6.49, 4.34, 2.08, 1.83, 1.24 ppm. ¹³C-NMR (100 MHz, THF-d₈): δ = 161.7, 151.0, 147.1, 140.7, 133.2, 130.6, 129.7, 125.6, 118.0, 52.8 (CH₂-), 51.9 (CH₂-), 30.5 (CH₂-), 30.4 (CH₂-), 30.3 (CH₂-), 30.2 (CH₂-), 30.1 (CH₂-), 29.7 (CH₂-), 29.6 (CH₂-), 29.5 (CH₂-), 26.9 (CH₂-), 20.8 ppm. Uv-vis (THF) λ_{max} = 276 nm; λ_{em} = 374 nm.

Anal. calc. for $C_{464}H_{577}B_{16}N_{48}$ C 79.62; H 8.31; N 9.60. Found: C 77.68; H 8.39; N 9.93.

2. Supplementary Analytical Data

2.1. Electrochemical and Uv-vis-spectroscopic Data

E / **V** vs. Fc/Fc^{+} Figure S1. Cyclic voltammogram of B₂-TMS. Recorded in THF with [N*n*-Bu₄][PF₆] (0.1 M) as electrolyte at 300 mV/s. * = internal standard ferrocene.

E / V vs. Fc/Fc⁺ Figure S2. Cyclic voltammogram of PTrz. Recorded in THF with $[Nn-Bu_4][PF_6]$ (0.1 M) as electrolyte at 300 mV/s. * = internal standard ferrocene.

E / V vs. Fc/Fc^{+} Figure S3. Cyclic voltammogram of PTrz. Recorded as dip-coated film on a platinum electrode vs. 0.1 M [N*n*Bu₄][PF₆] in NCMe-solution. * = internal standard ferrocene.

Figure S4. UV-vis absorption (solid) and emission (dashed) spectra of B₂-H in THF solution.

Figure S5. Deconvolution of the UV-vis absorption spectrum of B₂-TMS in THF solution at ambient temperature.

Figure S6. Deconvolution of the UV-vis absorption spectrum of B₂-H in THF solution at ambient temperature.

Figure S7. Deconvolution of the UV-vis absorption spectrum of Trz-CF₃ in THF solution at ambient temperature.

Figure S8. Deconvolution of the UV-vis absorption spectrum of Trz-Me in THF solution at ambient temperature.

Figure S9. Deconvolution of the UV-vis absorption spectrum of Trz-OMe in THF solution at ambient temperature.

Figure S10. Deconvolution of the UV-vis absorption spectra of PTrz in THF solution at ambient temperature.

Figure S11. Fluorescence lifetimes of Trz-CF₃ (c = $4.0 \cdot 10^{-7}$ M), Trz-OMe (c = $1.3 \cdot 10^{-6}$ M), and Trz-Me (c = $1.1 \cdot 10^{-6}$ M) in THF solution at ambient temperature.

 $$\lambda$ / nm $$\lambda$ / nm Figure S12. Normalized absorption (left) and fluorescence (right) spectra of Trz-OMe at variable temperatures. Recorded in THF; excitation wavelength 330 nm.

Recorded in THF; excitation wavelength 340 nm.

2.2.¹¹B NMR Spectra

Figure S14. ¹¹B NMR-spectrum of Trz-CF₃ in THF-d₈. Glass background of the NMR-probe-head (black).

Figure S17. ¹¹B NMR-spectrum of Trz-OMe in THF-d₈.

Figure S18. ¹¹B NMR-spectrum of PTrz in THF-d₈. Glass background of the NMR-probe-head (black).

2.3. Dynamic ¹H NMR Experiments

Hindered rotation of the mesityl-groups strongly affects chemical shifts of the *ortho*-methyl-groups and aromatic *meta*-protons in ¹H NMR spectra of **Trz-OMe**, **Trz-Me**, and **Trz-CF**₃. The system, presumably, eventually becomes locked in *closed*, twofold $N \rightarrow B$ -coordinated conformation, wherein the four *ortho*-methyl-groups and aromatic *meta*-protons on each BMes₂-group become magnetically inequivalent.

2.3.1. ΔG^{\ddagger} estimate from T_{C}

The signals of the aromatic mesityl protons appear sharp at elevated temperature (340 K), but split into two broadened signals below a coalescence temperature of 235 K (T_c1) and appear further resolved into four individual signals below 220 K (T_c2) (see Figure S22, Figure S23, and Figure S24). The Gibbs activation energy dynamic exchange processes in **Trz-OMe**, **Trz-Me**, and **Trz-CF**₃ has been estimated from the signal separations at 208 K (Δ v1, Δ v2 in Hz) in ¹H NMR experiments at 500 MHz in THF-d₈, and from the coalescence temperatures (T_c in K) in the same solvent, according to:

 $\Delta G^{\ddagger} = R^{*}T_{C}[9.972 + log(T_{C}/\Delta v)] [J^{*}mol^{-1}]$

Trz-CF ₃	Δv1 ^[a] (208 K)	T _C 1 [K]	∆G [‡] ₁ [kJ/mol]	Δv2 ^[b] (208 K)	T _C 2 [K]	∆G‡₂ [kJ/mol]
	[Hz]			[Hz]		
	28	220±3K	45.9 ±0.6	128	235±3K	46.0 ±0.6
Trz-	Δv1 (208 K) [Hz]	Tc1 [K]	ΔG [‡] ₁ [kJ/mol]	Δv2 (208 K) [Hz]	Tc2 [K]	∆G [‡] ₂ [kJ/mol]
OMe						
	21	220±3	46.3 ±0.6	125	235±3	46.1 ±0.6
Trz-Me	Δv1 (208 K) [Hz]	Tc1 [K]	ΔG^{\ddagger} [kJ/mol]	Δv2 (208 K) [Hz]	T _c 2 [K]	∆G [‡] ₂ [kJ/mol]
	23	220+3	46 1+0 7	126	235+3	46 1 +0 6

Table S1. ΔG^{\ddagger} according to dynamic NMR experiments.

[a] Signal separation within each pseudo-doublet at 208 K. Averaged over both signal pairs. [b] Averaged separation of pseudo-doublets at 208 K.

2.3.2.Line shape analyses

General method: The signals of the aromatic mesityl protons of **Trz-OMe**, **Trz-Me** and **Trz-CF**₃ in variable temperature ¹H NMR spectra (see Figure S22, Figure S23, and Figure S24) were fitted as a four-spin systems without scalar coupling, based on the line-width and chemical shifts of 500 MHz ¹H NMR spectra at 208 K in THF-d₈. The spectra were simulated and compared to the experimental spectra using the WINDNMR program package (version 7.1.14).¹⁰ The rate constants (k_r) for theThermalexchange could then be determined from these simulations as a function of temperature. According to the Eyring equation, linear fit (y = a + b*x) of the plot of ln(kr/T) versus 1/T then allowed to derive the activation parameters as followes:

$$\Delta G^{\ddagger} = \Delta H^{\ddagger} - \Delta S^{\ddagger *} T$$

 $k_r = k_B^*T^*R^{-1}*exp(-\Delta G^{\ddagger*}R^{-1}*T^{-1})$ (Eyring equation)

 $\Rightarrow \Delta H^{\ddagger} = -(m)^{*}R; \Delta S^{\ddagger} = ([b]+ln(h/k_{B})/R)$

With: R: gas constant, 8.3144 J*K⁻¹mol⁻¹; k_B: Boltzman's constant, 1.3805*10⁻²³ J*K⁻¹ h: Planck's constant, $6.6256*10^{-34}$ J*s; a, b = intercept and slope of linear fit (y = a + b*x)

Figure S22. Dynamic ¹H NMR of Trz-CF₃ in THF-d₈ at 500 MHz. Signal assignment according to Chart S1.

Figure S23. Dynamic ¹H NMR of Trz-OMe in THF-d₈ at 500 MHz. Signal assignment according to Chart S1.

Figure S24. Dynamic ¹H NMR of Trz-Me in THF-d₈ at 500 MHz. Signal assignment according to Chart S1.

2.4. NMR and MS Spectra

Figure S27. HR-FTMS-spectrum of B_2 -TMS. The insert shows enlarged the experimental (top) and calculated (bottom) isotope-pattern of the molecular ion.

Figure S33. HR-FTMS-spectrum of Trz-CF₃. The insert shows enlarged the experimental (top) and calculated (bottom) isotope-pattern of the molecular ion.

Mass spectra of all three model boranes, as well as **PTrz**, showed signals corresponding to the molecular monocations after loss of one equivalent of either mesityl- ([M-Mes]⁺), or methyl-groups ([M-CH₃]⁺), that are more prominent than those of the molecular ions ([M]⁺). See also Figure S36, Figure S39, and Figure S42.

Figure S36. HR-FIMS-spectrum of Trz-Me. The insert shows enlarged the experimental (top) and calculated (bottom) isotope-pattern of the molecular ion.

Mass spectra of all three model boranes, as well as **PTrz**, showed signals corresponding to the molecular monocations after loss of one equivalent of either mesityl- ([M-Mes]⁺), or methyl-groups ([M-CH₃]⁺), that are more prominent than those of the molecular ions ([M]⁺). See also Figure S33, Figure S39, and Figure S42.

Mass spectra of all three model boranes, as well as **PTrz**, showed signals corresponding to the molecular monocations after loss of one equivalent of either mesityl- ([M-Mes]⁺), or methyl-groups ([M-CH₃]⁺), that are more prominent than those of the molecular ions ([M]⁺). See also Figure S33, Figure S36, and Figure S42.

Figure S42. a) HR-FTMS-spectrum of PTrz, and b)-h) comparison of experimental (top) and calculated (bottom) isotope-patterns. $A_x B_y$ corresponds to the diazide / stoichiometry. e) Species wherein an azide-end-group has been reduced to NH₂. Originates either from impurity in the reactant, or decomposed during the polymerization or ionization.

The molecular compounds **Trz-Me**, **Trz-OMe**, and **Trz-CF**3 showed similar fragmentation pattersns (See Figure S33, Figure S36, and Figure S39).

Figure S43.Thermalgravimetric analysis of PTrz. Scan rate 10 °C/min.

3. DFT Study

Scheme S1. Simulated conformers of Trz-boranes.

Trz-OMe': R = OMe, Trz-Me': R = Me, Trz-CF₃': R = CF₃, PTrz': Me instead of *p*-R-Ph.

Table S2. Calculated structural parameters for Trz-boranes.

Optimizations of **Trz-OMe**', **Trz-Me**, **Trz-CF**₃' and **PTrz**', performed at the B3LYP-D2/tzvp level. **TS**'-structures optimized at the B3LYP-D2/def2-TZVP-level including PCM-emulation of solvent THF.

Trz-R'	Trz-(OMe'	Trz	·Me'	Trz-N	/le ^{xrd}	Trz	-CF₃'	P	'rz'		TS'	
	Closed	Open	Closed	Open			Closed	Open	Closed	Open	Closed	TS	open
d(N→B) / Å	1.661 1.660		1.659		1.655(0)	1.664(0)	1.667		1.661		1.664		
Angle α / ° ^[a]	+5.4 -5.3	±52.6	±5.0	-132.7 -132.6	±6.5(1)	±6.1(1)	±5.7	±55.8	5.4	51.6 -31.7	4.6	-52.9	-56.2
d(C-N) / Å	1.424	1.417	1.425	1.418	1.442(1)	1.440(1)	1.421	1.412	1.455	1.450	1.457	1.452	1.451
d(C-B) / Å	1.628	1.569	1.627	1.574	1.642(1)	1.645(1)	1.627	1.571	1.628	1.569 1.570	1.633	1.574	1.568
d(C-C) / Å	1.445	1.465	1.445	1.465	1.459(1)	1.457(1)	1.444	1.466	1.445	1.466 1.465	1.447	1.472	1.468
Angle β/ ° ^[b]	30.8	±34.7	±27.3	-9.5 9.3	±31.0(1)	±40.9(1)	±24.7	±17.9					
Angle $\gamma^{o[c]}$		17.3		17.3 17.4				11.0		15.9 16.0		47.3	15.4
$C_{\text{Trz}}\text{-}C_{\text{Mes}}^{[d]}$		3.008		3.107				2.996		3.006 3.012		3.573	3.007

[a] Dihedral angle (N-C-C-C) within the N \rightarrow B-ring. [b] Dihedral angle (N=N-C-C) between triazole and terminal phenyl ring. [c] Angle between the triazole ring and the closest mesityl-ring. [d] Distance C-4 of the triazole ring and C-1 of the closest mesityl ring.

Table S3. Calculated electronic properties of Trz-boranes.

Optimizations of Trz-OMe	', Trz-Me, Trz-CF3	and PTrz', pe	erformed at the I	B3LYP-D2/tzvp level
--------------------------	--------------------	---------------	-------------------	---------------------

		HOMO-2	HOMO-1	номо	LUMO	LUMO+1	HOMO/LUMO-gap
	Energy	eV	eV	eV	eV	eV	eV
PTrz'							
open	0.0	-6.20	-6.14	-6.01	-2.06	-1.44	3.95
half-open	-0.4	-5.86	-5.72	-5.63	-1.73	-1.55	3.90
closed	:=0	-5.67	-5.63	-5.47	-1.56	-1.53	3.91
Trz-Me'							
open	-2.1	-6.24	-6.08	-5.80	-2.36	-1.49	3.44
half-open	-2.1	-5.83	-5.69	-5.62	-2.06	-1.76	3.55
closed	:=0	-5.63	-5.60	-5.44	-2.01	1.95	3.42
Trz-OMe'							
open	-14.8	-6.16	-6.02	-5.85	-2.22	-1.51	3.64
half-open	-4.0	-5.80	-5.66	-5.58	-1.94	-1.65	3.64
closed	:=0	-5.60	-5.58	-5.41	-1.87	-1.81	3.54
Trz-CF₃′							
open	-17.8	-6.41	-6.32	-6.25	-2.45	-2.11	3.80
half-open	-2.8	-6.07	-5.92	-5.85	-2.69	-2.16	3.16
closed	:=0	-5.85	-5.82	-5.68	-2.63	-2.57	3.05
B ₂ -H		-6.23	-6.20	-6.11	-2.40	-1.59	3.71
B ₂ -TMS		-6.23	-6.18	-5.98	-2.41	-1.55	3.56

Figure S44. Calculated electronic transitions and corresponding simulated UV-vis spectra of triazolyl boranes. Simulated spectra based on first 15 excited states superimposed with a half-width at half-height of 0.333 eV. Geometry and TDDFT: B3LYP-D2/TZVP.

Table S4. Energies, oscillator strengths and orbital contributions of calculated electronic transitions. Optimizations of Trz-OMe', Trz-Me, Trz-CF₃' and PTrz', performed at the B3LYP-D2/tzvp level. Data extracted with GaussSum $3.0.^{11}$

PTrz', open'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetry	Major contribs	Minor contribs
1	26405.79	378.70	0.0510	Singlet-A	HOMO->LUMO (96%)	
2	27564.80	362.78	0.0010	Singlet-A	H-1->LUMO (91%)	HOMO->L+1 (4%)
3	28255.21	353.92	0.1713	Singlet-A	H-2->LUMO (92%)	H-1->L+1 (2%)
4	29137.59	343.20	0.0005	Singlet-A	H-3->LUMO (88%)	H-2->L+1 (3%), HOMO->L+1 (4%)
5	29479.56	339.22	0.0606	Singlet-A	H-5->LUMO (25%), H-4->LUMO (64%)	H-6->LUMO (3%)
6	29694.11	336.77	0.0003	Singlet-A	H-5->LUMO (68%), H-4->LUMO (26%)	H-4->L+1 (2%) H-7->L UMO (5%), H-7->L+1 (4%),
7	30225.63	330.85	0.0837	Singlet-A	H-6->LUMO (86%)	H-4->LUMO (2%)
8	30575.67	327.06	0.0001	Singlet-A	H-7->LUMO (88%)	H-6->LUMO (5%), H-6->L+1 (4%) H-9->LUMO (9%), H-3->L+1 (3%)
9	31929.07	313.19	0.0554	Singlet-A	H-8->LUMO (77%)	HOMO->L+1 (3%)
10	32219.43	310.37	0.0010	Singlet-A	HOMO->L+1 (86%)	H-8->LUMO (3%), H-3->LUMO (4%), H-1->LUMO (3%) H-9->LUMO (3%), H-8->LUMO
11	33668.81	297.01	0.0830	Singlet-A	H-1->L+1 (84%)	$(5\%), H-2 \rightarrow LUMO (2\%)$
12	33943.84	294.60	0.0936	Singlet-A	H-9->LUMO (67%), H-8->LUMO (10%)	H-2->L+1 (9%), H-1->L+1 (4%), HOMO->L+2 (2%) H-9->LUMO (7%). H-1->LUMO
13	34071.28	293.50	0.0095	Singlet-A	H-2->L+1 (80%)	(2%), H-1->L+1 (4%)
14	35064.95	285.19	0.0028	Singlet-A	H-4->L+1 (82%)	H-5->L+1 (4%), H-4->LUMO (4%)
15	35108.51	284.83	0.0088	Singlet-A	H-3->L+1 (82%)	H-9->LUMO (3%)

PTrz', half-open'

No	Energy (cm ⁻¹)	λ (nm)	Osc.	Symmetry	Major contribs	Minor contribs
140.	Energy (enr)	X (IIII)	Strength	Cymmeary		
1	26856.65	372.35	0.0423	Singlet-A	HOMO->LUMO (86%)	HOMO->L+1 (8%), HOMO->L+2 (2%)
2	27452.69	364.26	0.0013	Singlet-A	H-1->LUMO (69%), H-1->L+1 (26%)	H-1->L+2 (3%)
3	28273.77	353.68	0.0347	Singlet-A	H-3->LUMO (35%), H-2->LUMO (17%), HOMO->L+1 (35%)	H-3->L+1 (3%), H-1->L+1 (6%)
4	28617.36	349.44	0.0330	Singlet-A	H-3->LUMO (17%), H-2->LUMO (12%), HOMO->L+1 (55%)	H-1->L+1 (2%), HOMO->LUMO (8%)
5	29202.92	342.43	0.0187	Singlet-A	H-3->LUMO (23%), H-2->LUMO (49%), H-2->L+1 (21%)	H-5->LUMO (2%), H-2->L+2 (2%)
6	29382.78	340.34	0.0178	Singlet-A	H-1->LUMO (24%), H-1->L+1 (62%)	H-5->LUMO (3%), H-3->LUMO (5%)
7	30076.41	332.49	0.0625	Singlet-A	H-5->LUMO (69%)	H-5->L+1 (4%), H-2->L+1 (8%), H- 1->L+1 (2%), HOMO->L+2 (9%)
8	30531.31	327.53	0.0005	Singlet-A	H-4->LUMO (67%), H-2->L+1 (13%)	H-4->L+1 (9%), H-2->LUMO (4%)
9	30909.59	323.52	0.0021	Singlet-A	H-4->LUMO (16%), H-2->LUMO (12%), H-2->L+1 (55%)	H-5->LUMO (6%), H-4->L+1 (3%), H-3->LUMO (5%)
10	30949.11	323.11	0.0258	Singlet-A	HOMO->L+2 (76%)	H-6->LUMO (6%), H-5->LUMO (6%), HOMO->LUMO (3%)
11	31359.64	318.88	0.0530	Singlet-A	H-6->LUMO (83%)	H-6->L+1 (6%), HOMO->L+2 (5%)
12	31903.26	313.45	0.0477	Singlet-A	H-7->LUMO (20%), H-1->L+2 (65%)	H-3->L+1 (4%), H-1->LUMO (3%)
13	31989.56	312.60	0.0192	Singlet-A	H-7->LUMO (65%), H-1->L+2 (22%)	H-7->L+1 (5%)
14	32170.23	310.85	0.0006	Singlet-A	H-4->LUMO (11%), H-4->L+1 (85%)	
15	32312.18	309.48	0.0068	Singlet-A	H-3->L+1 (72%)	H-8->LUMO (4%), H-5->L+1 (6%), H-3->LUMO (5%), H-1->L+2 (3%)

PTrz', closed'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetry	Major contribs	Minor contribs
1	26832.45	372.68	0.0369	Singlet-A	HOMO->LUMO (24%), HOMO->L+1 (70%)	H-1->L+2 (4%)
2	27182.50	367.88	0.0115	Singlet-A	HOMO->LUMO (73%), HOMO->L+1 (20%)	H-1->L+2 (4%)
3	27447.85	364.33	0.0000	Singlet-A	H-1->L+1 (27%), HOMO->L+2 (71%)	
4	28086.64	356.04	0.0187	Singlet-A	H-3->L+2 (25%), H-2->L+1 (64%)	H-1->L+2 (8%)
5	28142.30	355.34	0.0000	Singlet-A	H-3->L+1 (41%), H-2->L+2 (39%), H-1- >L+1 (15%)	H-3->LUMO (2%)
6	28390.72	352.23	0.0000	Singlet-A	H-1->LUMO (82%)	H-3->L+1 (3%), H-1->L+1 (9%), HOMO->L+2 (4%)
7	28937.56	345.57	0.0278	Singlet-A	H-2->LUMO (91%)	H-2->L+1 (6%)
8	29204.53	342.41	0.0000	Singlet-A	H-3->LUMO (71%), H-3->L+1 (17%)	H-1->LUMO (4%), H-1->L+1 (3%)
9	29422.30	339.88	0.0000	Singlet-A	H-3->LUMO (16%), H-1->LUMO (12%), H-1->L+1 (41%), HOMO->L+2 (20%)	H-4->L+2 (2%), H-3->L+1 (6%)
10	29725.56	336.41	0.0043	Singlet-A	H-5->L+2 (10%), H-4->L+1 (45%), H-3- >L+2 (12%), H-1->L+2 (27%)	HOMO->L+1 (2%)
11	29950.59	333.88	0.0190	Singlet-A	H-5->L+2 (12%), H-4->L+1 (25%), H-1- >L+2 (50%)	H-2->L+1 (2%), HOMO->L+1 (6%)
12	29994.15	333.40	0.0000	Singlet-A	H-5->L+1 (49%), H-4->L+2 (38%)	H-2->L+2 (4%)
13	30381.29	329.15	0.0273	Singlet-A	H-4->LUMO (91%)	H-4->L+1 (4%)
14	30589.38	326.91	0.0000	Singlet-A	H-5->LUMO (83%), H-5->L+1 (11%)	
15	30924.91	323.36	0.0000	Singlet-A	H-3->L+1 (25%), H-2->L+2 (51%)	H-5->LUMO (5%), H-5->L+1 (4%), H-3->LUMO (7%), H-1->L+1 (4%)

Trz-Me', open'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetr y	Major contribs	Minor contribs
1	22490.77	444.63	0.0313	Singlet-A	HOMO->LUMO (98%)	
2	24782.19	403.52	0.0000	Singlet-A	H-1->LUMO (95%)	HOMO->L+1 (3%)
3	26240.44	381.09	0.1572	Singlet-A	H-2->LUMO (86%)	H-4->LUMO (9%), H-3->L+1 (2%)
4	26697.76	374.56	0.0000	Singlet-A	H-3->LUMO (95%)	
5	27237.34	367.14	0.1118	Singlet-A	H-4->LUMO (82%), H-2->LUMO (10%)	H-10->LUMO (2%), H-6->LUMO (3%)
6	27520.44	363.37	0.0001	Singlet-A	H-5->LUMO (95%)	H-6->L+1 (2%)
7	27706.76	360.92	0.0145	Singlet-A	H-6->LUMO (92%)	H-5->L+1 (2%), H-4->LUMO (3%)
8	28081.00	356.11	0.0005	Singlet-A	H-7->LUMO (94%)	
9	28313.29	353.19	0.1116	Singlet-A	H-8->LUMO (94%)	
10	29902.20	334.42	0.0000	Singlet-A	H-9->LUMO (40%), HOMO->L+1 (54%)	H-1->LUMO (2%)
11	30239.34	330.70	0.0000	Singlet-A	H-9->LUMO (55%), HOMO->L+1 (40%)	
12	31672.59	315.73	0.0182	Singlet-A	H-10->LUMO (51%), HOMO->L+2 (32%)	H-11->LUMO (3%), H-4->LUMO (2%), H-1->L+1 (3%)
13	32401.71	308.63	0.3118	Singlet-A	H-10->LUMO (21%), H-1->L+1 (15%), HOMO->L+2 (54%)	H-1->L+3 (6%)
14	32825.15	304.64	0.0337	Singlet-A	H-10->LUMO (18%), H-1->L+1 (69%)	H-11->LUMO (4%), HOMO->L+2 (4%)
15	32854.99	304.37	0.0003	Singlet-A	H-1->L+2 (19%), HOMO->L+3 (76%)	

Trz-Me' ,half-open'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetr y	Major contribs	Minor contribs
1	24286.16	411.76	0.0051	Singlet-A	HOMO->LUMO (94%)	H-1->LUMO (4%)
2	24428.92	409.35	0.0084	Singlet-A	H-1->LUMO (94%)	HOMO->LUMO (4%)
3	26057.35	383.77	0.0083	Singlet-A	H-2->LUMO (94%)	H-3->LUMO (4%)
4	27003.44	370.32	0.0572	Singlet-A	H-3->L+1 (19%), HOMO->L+1 (64%)	H-3->LUMO (4%), H-2->L+1 (7%), H-1->L+1 (4%)
5	27539.80	363.11	0.0226	Singlet-A	H-3->LUMO (17%), H-3->L+1 (32%), HOMO->L+1 (30%)	H-2->L+1 (8%), H-1->L+1 (7%)
6	27784.19	359.92	0.0008	Singlet-A	H-4->LUMO (98%)	
7	28182.62	354.83	0.0146	Singlet-A	H-3->LUMO (22%), H-1->L+1 (70%)	
8	28499.60	350.88	0.0144	Singlet-A	H-3->LUMO (44%), H-3->L+1 (24%), H-1->L+1 (13%)	H-5->LUMO (4%), H-5->L+1 (2%), H-2->LUMO (3%), H-2->L+1 (5%)
9	29148.07	343.08	0.0441	Singlet-A	H-5->LUMO (29%), H-5->L+1 (37%), H-2->L+1 (21%)	H-3->LUMO (3%)
10	29630.39	337.49	0.0100	Singlet-A	H-5->LUMO (23%), H-3->L+1 (18%), H-2->L+1 (50%)	H-3->LUMO (2%)
11	29947.37	333.92	0.0246	Singlet-A	H-6->LUMO (16%), H-5->LUMO (19%), H-5->L+1 (41%)	H-6->L+1 (8%), H-2->L+1 (5%)
12	30341.77	329.58	0.0339	Singlet-A	H-6->LUMO (14%), H-6->L+1 (21%), H-5->LUMO (13%), HOMO->L+2 (32%)	H-5->L+1 (3%), HOMO->L+3 (9%), HOMO->L+4 (3%)
13	30625.68	326.52	0.0419	Singlet-A	H-6->LUMO (25%), HOMO->L+2 (35%)	H-6->L+1 (8%), H-5->LUMO (5%), H-5->L+1 (7%), HOMO->L+3 (8%)
14	30841.03	324.24	0.0044	Singlet-A	H-4->L+1 (92%)	
15	31015.24	322.42	0.0297	Singlet-A	H-6->LUMO (24%), H-6->L+1 (50%)	H-9->LUMO (9%), H-5->LUMO (3%), H-1->L+2 (4%)

Trz-Me' ,closed'

Ν	lo.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetr y	Major contribs	Minor contribs
	1	23683.66	422.23	0.0205	Singlet-A	HOMO->LUMO (92%)	H-1->L+1 (5%)
	2	24039.35	415.98	0.0000	Singlet-A	H-1->LUMO (13%), HOMO->L+1 (83%)	H-3->LUMO (2%)
	3	24687.02	405.07	0.0147	Singlet-A	H-3->L+1 (23%), H-2->LUMO (61%), H-1->L+1 (13%)	
	4	24716.05	404.60	0.0000	Singlet-A	H-3->LUMO (34%), H-2->L+1 (43%), H-1->LUMO (20%)	
	5	25704.89	389.03	0.0000	Singlet-A	H-3->LUMO (22%), H-1->LUMO (59%), HOMO->L+1 (14%)
	6	25926.69	385.70	0.0025	Singlet-A	H-3->L+1 (16%), H-1->L+1 (60%), HOMO->L+2 (11%)	H-4->LUMO (3%), HOMO- >LUMO (7%)
	7	26265.44	380.73	0.0213	Singlet-A	H-5->L+1 (21%), H-4->LUMO (60%)	H-3->L+1 (4%), H-2->LUMO (6%), H-1->L+1 (4%), HOMO->L+2 (2%)
	8	26371.91	379.19	0.0000	Singlet-A	H-5->LUMO (42%), H-4->L+1 (40%)	H-3->LUMO (4%), H-2->L+1 (9%), H-1->LUMO (3%)
	9	26883.27	371.98	0.0169	Singlet-A	H-3->L+1 (35%), H-2->LUMO (29%), H-1->L+1 (11%), HOMO->L+2 (11%)	H-5->L+1 (5%), H-4->LUMO (5%), H-2->L+2 (3%)
	10	26888.91	371.90	0.0000	Singlet-A	H-5->LUMO (10%), H-3->LUMO (35%), H-2->L+1 (43%)	H-4->L+1 (5%), H-1->LUMO (5%)
	11	27117.97	368.76	0.0541	Singlet-A	H-3->L+1 (13%), HOMO->L+2 (72%)	H-4->LUMO (3%), H-1->L+1 (6%)
	12	27820.48	359.45	0.0000	Singlet-A	H-7->LUMO (43%), H-6->L+1 (18%), I (13%)	H-5->LUMO (21%), H-4->L+1
	13	27891.46	358.53	0.0013	Singlet-A	H-7->L+1 (32%), H-6->LUMO (64%)	
	14	28005.99	357.07	0.0000	Singlet-A	H-7->LUMO (20%), H-6->L+1 (15%), I (37%)	H-5->LUMO (24%), H-4->L+1
	15	28021.31	356.87	0.0214	Singlet-A	H-5->L+1 (64%), H-4->LUMO (26%)	H-8->LUMO (4%), H-3->L+1 (2%)

Trz-CF₃', open'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetry	Major contribs	Minor contribs
1	25358.88	394.34	0.0240	Singlet-A	HOMO->LUMO (93%)	H-1->L+1 (3%)
2	26070.26	383.58	0.0000	Singlet-A	H-1->LUMO (88%)	HOMO->L+1 (7%)
3	27151.04	368.31	0.1325	Singlet-A	H-2->LUMO (92%)	H-3->L+1 (2%)
4	27655.14	361.60	0.0000	Singlet-A	H-3->LUMO (83%)	H-2->L+1 (4%), H-1->LUMO (2%), HOMO->L+1 (5%)
5	28253.60	353.94	0.0738	Singlet-A	H-6->LUMO (10%), H-5->LUMO (76%)	H-4->LUMO (4%), H-4->L+1 (3%)
6	28445.56	351.55	0.0000	Singlet-A	H-4->LUMO (84%)	H-5->LUMO (5%), H-5->L+1 (3%)
7	28925.46	345.72	0.0506	Singlet-A	H-6->LUMO (81%), H-5->LUMO (11%)	H-7->L+1 (3%)
8	29138.39	343.19	0.0000	Singlet-A	H-7->LUMO (81%)	H-6->L+1 (5%), H-4->LUMO (3%), HOMO->L+1 (5%)
9	29507.79	338.89	0.0000	Singlet-A	HOMO->L+1 (73%)	(8%), H-3->LUMO (8%), H-3->L+2 (2%), H-1->LUMO (3%), H-1->L+2 (6%)
10	29830.42	335.23	0.0055	Singlet-A	H-1->L+1 (62%), HOMO->L+2 (25%)	H-8->LUMO (3%), H-3->L+1 (6%)
11	30993.47	322.65	0.0789	Singlet-A	H-8->LUMO (52%), H-3->L+1 (19%), H- 1->L+1 (10%)	H-9->LUMO (4%), H-7->L+1 (2%), H-4->L+1 (2%)
12	31059.60	321.96	0.0000	Singlet-A	H-2->L+1 (81%)	H-7->LUMO (2%), H-7->L+2 (2%), H-3->LUMO (3%) H-1->L+2 (4%)
13	31295.92	319.53	0.1505	Singlet-A	H-8->LUMO (16%), H-1->L+1 (17%), HOMO->L+2 (46%)	H-3->L+1 (9%), H-1->L+3 (5%), HOMO->LUMO (2%)
14	31685.49	315.60	0.0000	Singlet-A	H-1->L+2 (58%), HOMO->L+3 (18%)	H-8->L+1 (2%), H-3->L+2 (2%), H-2->L+1 (6%), H-1->LUMO (4%), HOMO->L+1 (5%)
15	31813.73	314.33	0.0034	Singlet-A	H-8->LUMO (18%), H-3->L+1 (27%), HOMO->L+2 (11%)	H-7->L+1 (8%), H-6->L+2 (4%), H-5->L+2 (3%), H-4->L+1 (8%), H-2->L+2 (7%), H-1->L+1 (3%), H-1->L+3 (3%)

Trz-CF₃' ,half-open'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetry	Major contribs	Minor contribs
1	21383.37	467.65	0.0034	Singlet-A	HOMO->LUMO (91%)	H-1->LUMO (8%)
2	21490.64	465.32	0.0084	Singlet-A	H-1->LUMO (90%)	HOMO->LUMO (8%)
3	23106.98	432.77	0.0089	Singlet-A	H-2->LUMO (97%)	
4	24808.81	403.08	0.0004	Singlet-A	H-4->LUMO (97%)	
5	25526.64	391.75	0.0123	Singlet-A	H-3->LUMO (92%)	H-5->LUMO (2%)
6	26010.57	384.46	0.0461	Singlet-A	HOMO->L+1 (87%)	H-3->L+1 (5%), HOMO->L+3 (2%)
7	26599.36	375.95	0.0089	Singlet-A	H-5->LUMO (88%)	H-8->LUMO (2%), H-6->LUMO (4%), H-3->LUMO (3%)
8	26813.10	372.95	0.0054	Singlet-A	H-3->L+1 (49%), H-1->L+1 (30%)	H-2->L+1 (8%), HOMO->L+1 (7%)
9	27204.27	367.59	0.0083	Singlet-A	H-3->L+1 (29%), H-1->L+1 (60%)	H-2->L+1 (3%), H-1->L+2 (3%)
10	27743.05	360.45	0.0018	Singlet-A	H-6->LUMO (91%)	H-9->LUMO (2%), H-5->LUMO (5%)
11	28220.53	354.35	0.0020	Singlet-A	H-7->LUMO (86%)	H-9->LUMO (3%), H-8->LUMO (7%), H-5->LUMO (3%)
12	28344.74	352.80	0.0267	Singlet-A	H-5->L+1 (14%), H-3->L+1 (10%), H-2- >L+1 (66%)	
13	28743.99	347.90	0.0033	Singlet-A	H-5->L+1 (29%), H-2->L+1 (11%), HOMO->L+2 (32%)	H-8->LUMO (8%), H-6->L+1 (2%), HOMO->L+4 (4%)
14	28844.81	346.68	0.0354	Singlet-A	H-5->L+1 (34%), HOMO->L+2 (39%)	H-7->L+1 (2%), H-6->L+1 (7%), H-2->L+1 (3%), HOMO->L+3 (3%), HOMO->L+4 (3%)
15	28853.68	346.58	0.0127	Singlet-A	H-8->LUMO (73%), HOMO->L+2 (11%)	H-7->LUMO (8%)

Trz-CF₃' ,closed'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetry	Major contribs	Minor contribs
1	20895.41	478.57	0.0181	Singlet-A	HOMO->LUMO (92%)	H-1->L+1 (6%)
2	21222.87	471.19	0.0000	Singlet-A	H-1->LUMO (17%), HOMO->L+1 (81%)	
3	21755.19	459.66	0.0149	Singlet-A	H-3->L+1 (22%), H-2->LUMO (62%), H- 1->L+1 (14%)	
4	21784.23	459.05	0.0000	Singlet-A	H-3->LUMO (33%), H-2->L+1 (42%), H- 1->LUMO (21%)	HOMO->L+1 (2%)
5	22694.02	440.64	0.0000	Singlet-A	H-3->LUMO (23%), H-1->LUMO (56%), HOMO->L+1 (15%)	H-2->L+1 (3%)
6	22977.93	435.20	0.0005	Singlet-A	H-3->L+1 (15%), H-1->L+1 (70%)	H-4->LUMO (3%), H-2->LUMO (3%), HOMO->LUMO (7%)
7	23302.16	429.14	0.0225	Singlet-A	H-5->L+1 (23%), H-4->LUMO (60%)	H-3->L+1 (4%), H-2->LUMO (6%), H-1->L+1 (4%)
8	23376.37	427.78	0.0000	Singlet-A	H-5->LUMO (44%), H-4->L+1 (39%)	H-3->LUMO (4%), H-2->L+1 (8%), H-1->LUMO (2%)
9	23843.36	419.40	0.0000	Singlet-A	H-5->LUMO (10%), H-3->LUMO (36%), H-2->L+1 (44%)	H-4->L+1 (5%), H-1->LUMO (4%)
10	23897.40	418.46	0.0055	Singlet-A	H-3->L+1 (53%), H-2->LUMO (28%)	H-5->L+1 (6%), H-4->LUMO (7%), H-1->L+1 (4%)
11	24774.13	403.65	0.0000	Singlet-A	H-7->L+1 (23%), H-6->LUMO (56%), H- 5->LUMO (14%)	H-4->L+1 (5%)
12	24801.55	403.20	0.0009	Singlet-A	H-7->LUMO (65%), H-6->L+1 (30%)	H-4->LUMO (3%)
13	24953.18	400.75	0.0000	Singlet-A	H-7->L+1 (10%), H-5->LUMO (31%), H- 4->L+1 (48%)	H-6->LUMO (9%)
14	25003.99	399.94	0.0093	Singlet-A	H-5->L+1 (68%), H-4->LUMO (26%)	H-6->L+1 (3%)
15	26106.55	383.05	0.0020	Singlet-A	H-7->LUMO (31%), H-6->L+1 (61%)	HOMO->L+2 (5%)

Trz-OMe' ,open'

112						
No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetry	Major contribs	Minor contribs
1	26011.38	384.45	0.0325	Singlet-A	HOMO->LUMO (95%)	H-1->L+1 (2%)
2	27165.56	368.11	0.0000	Singlet-A	H-1->LUMO (92%)	HOMO->L+1 (5%)
3	28150.36	355.24	0.1753	Singlet-A	H-2->LUMO (91%)	H-3->L+1 (2%)
4	28819.80	346.98	0.0000	Singlet-A	H-3->LUMO (91%)	H-2->L+1 (3%), HOMO->L+1 (3%)
5	29307.77	341.21	0.0874	Singlet-A	H-5->LUMO (84%)	H-8->LUMO (3%), H-6->LUMO (6%), H-4->L+1 (2%)
6	29510.21	338.87	0.0000	Singlet-A	H-7->LUMO (15%), H-4->LUMO (79%)	H-5->L+1 (3%)
7	30074.80	332.50	0.0737	Singlet-A	H-8->LUMO (90%)	H-9->L+1 (3%), H-5->LUMO (4%)
8	30347.42	329.52	0.1233	Singlet-A	H-6->LUMO (75%)	H-11->LUMO (2%), H-10->LUMO (3%), H-9->LUMO (7%), H-5->LUMO (3%)
9	30347.42	329.52	0.0119	Singlet-A	H-9->LUMO (70%), H-7->LUMO (13%)	H-8->L+1 (4%), H-6->LUMO (7%)
10	31080.57	321.74	0.0000	Singlet-A	H-9->LUMO (16%), H-7->LUMO (66%), H-4->LUMO (14%)	
11	31760.50	314.86	0.0000	Singlet-A	HOMO->L+1 (88%)	H-3->LUMO (3%), H-1->LUMO (4%)
12	32814.67	304.74	0.0139	Singlet-A	H-10->LUMO (56%), H-1->L+1 (19%)	H-11->LUMO (9%), H-6->LUMO (6%), H-3->L+1 (3%)
13	33216.33	301.06	0.0531	Singlet-A	H-10->LUMO (22%), H-1->L+1 (71%)	
14	33798.66	295.87	0.0000	Singlet-A	H-2->L+1 (91%)	H-3->LUMO (3%)
15	33823.67	295.65	0.0977	Singlet-A	H-11->LUMO (69%), H-10->LUMO (12%)	H-3->L+1 (5%), H-1->L+1 (3%), HOMO->L+6 (4%)

Trz-OMe' ,half-open'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetry	Major contribs	Minor contribs
1	24854.78	402.34	0.0077	Singlet-A	HOMO->LUMO (98%)	
2	25074.16	398.82	0.0056	Singlet-A	H-1->LUMO (98%)	
3	26722.76	374.21	0.0079	Singlet-A	H-2->LUMO (91%)	H-3->LUMO (7%)
4	27536.57	363.15	0.0684	Singlet-A	H-3->L+1 (12%), HOMO->L+1 (70%)	H-3->LUMO (4%), H-2->L+1 (8%), H-1- >L+1 (2%)
5	28064.06	356.33	0.0237	Singlet-A	H-3->LUMO (24%), H-3->L+1 (27%), H-2->L+1 (11%), HOMO->L+1 (23%)	H-1->L+1 (7%), HOMO->L+3 (2%)
6	28495.57	350.93	0.0007	Singlet-A	H-4->LUMO (97%)	
7	28746.41	347.87	0.0175	Singlet-A	H-3->LUMO (26%), H-1->L+1 (64%)	H-2->LUMO (3%), H-1->L+3 (2%)
8	29060.16	344.11	0.0178	Singlet-A	H-3->LUMO (29%), H-3->L+1 (23%), H-1->L+1 (21%)	H-5->LUMO (5%), H-5->L+1 (4%), H-2- >LUMO (4%), H-2->L+1 (9%)
9	29728.79	336.37	0.0563	Singlet-A	H-5->LUMO (31%), H-5->L+1 (34%), H-2->L+1 (18%)	H-3->LUMO (4%), HOMO->L+2 (2%), HOMO->L+3 (2%)
10	30265.95	330.40	0.0124	Singlet-A	H-5->LUMO (18%), H-3->L+1 (27%), H-2->L+1 (45%)	H-3->LUMO (2%)
11	30591.00	326.89	0.0077	Singlet-A	H-5->LUMO (25%), H-5->L+1 (32%)	H-9->LUMO (2%), H-7->LUMO (3%), H-6->LUMO (8%), H-6->L+1 (5%), H-2- >L+1 (4%), HOMO->L+2 (8%), HOMO- >L+3 (3%)
12	30692.62	325.81	0.0450	Singlet-A	H-6->L+1 (14%), HOMO->L+2 (46%), HOMO->L+3 (17%)	H-6->LUMO (7%), H-5->L+1 (4%)
13	31111.22	321.43	0.0598	Singlet-A	H-7->LUMO (13%), H-7->L+1 (10%), H >LUMO (10%), H-5->L+1 (14%), HOMO	-6->LUMO (18%), H-6->L+1 (14%), H-5- D->L+2 (12%)
14	31428.20	318.19	0.0116	Singlet-A	H-4->L+1 (10%), H-1->L+2 (68%)	H-7->LUMO (4%), H-1->L+3 (7%)
15	31535.47	317.10	0.0198	Singlet-A	H-4->L+1 (76%)	H-6->LUMO (2%), H-1->L+2 (9%)

Trz-OMe' ,closed'

No.	Energy (cm ⁻¹)	λ (nm)	Osc. Strength	Symmetry	Major contribs	Minor contribs
1	24483.77	408.43	0.0219	Singlet-A	HOMO->LUMO (91%)	H-1->L+1 (5%)
2	24830.58	402.73	0.0000	Singlet-A	H-1->LUMO (12%), HOMO->L+1 (83%)	H-3->LUMO (2%)
3	25495.19	392.23	0.0151	Singlet-A	H-3->L+1 (23%), H-2->LUMO (55%), H- 1->L+1 (14%)	H-1->LUMO (3%)
4	25528.25	391.72	0.0003	Singlet-A	H-3->LUMO (36%), H-2->L+1 (40%), H- 1->LUMO (15%)	H-2->LUMO (3%)
5	26514.67	377.15	0.0017	Singlet-A	H-3->LUMO (15%), H-1->LUMO (49%), HOMO->L+1 (10%)	H-1->L+1 (9%), HOMO->LUMO (3%), HOMO->L+2 (7%)
6	26621.94	375.63	0.0129	Singlet-A	H-1->LUMO (10%), H-1->L+1 (30%), HOMO->L+2 (30%)	H-3->LUMO (4%), H-3->L+1 (8%), H-2- >LUMO (2%), H-2->L+1 (4%), HOMO- >LUMO (4%), HOMO->L+1 (3%)
7	27083.29	369.23	0.0154	Singlet-A	H-5->L+1 (18%), H-4->LUMO (55%)	H-3->L+1 (9%), H-2->LUMO (4%), HOMO->L+2 (8%)
8	27227.66	367.27	0.0005	Singlet-A	H-5->LUMO (39%), H-4->L+1 (39%)	H-3->LUMO (4%), H-2->L+1 (9%), H-1- >LUMO (4%)
9	27394.62	365.04	0.0621	Singlet-A	H-1->L+1 (36%), HOMO->L+2 (47%)	H-4->LUMO (3%), H-2->LUMO (7%)
10	27712.40	360.85	0.0063	Singlet-A	H-3->LUMO (20%), H-3->L+1 (10%), H- 2->LUMO (13%), H-2->L+1 (23%)	H-5->LUMO (9%), H-5->L+1 (3%), H-4- >LUMO (3%), H-4->L+1 (2%), H-1- >LUMO (5%), H-1->L+2 (3%)
11	27821.29	359.44	0.0119	Singlet-A	H-3->LUMO (14%), H-3->L+1 (34%), H- 2->LUMO (13%), H-2->L+1 (13%)	H-5->LUMO (2%), H-5->L+1 (4%), H-4- >LUMO (6%), H-4->L+1 (3%), H-2->L+2 (5%)
12	28518.96	350.64	0.0017	Singlet-A	H-1->L+2 (81%)	H-3->L+2 (4%), H-1->L+4 (2%)
13	28693.17	348.51	0.0003	Singlet-A	H-6->LUMO (36%), H-6->L+1 (20%), H- 5->LUMO (17%)	H-7->LUMO (3%), H-4->LUMO (4%), H-4- >L+1 (9%), H-1->L+2 (6%)
14	28793.99	347.29	0.0015	Singlet-A	H-7->LUMO (34%), H-7->L+1 (12%), H- 6->LUMO (16%), H-6->L+1 (14%)	H-5->LUMO (9%), H-4->L+1 (8%)
15	28848.84	346.63	0.0188	Singlet-A	H-7->LUMO (26%), H-7->L+1 (10%), H- 5->L+1 (19%), H-4->LUMO (16%), H-4- >L+1 (11%)	H-6->LUMO (2%), H-6->L+1 (4%), H-5- >LUMO (3%), H-2->L+2 (3%)

Figure S45. Frontier orbital plots of closed conformers. Iso-value 0.03.

Figure S46. Frontier orbital plots of *closed* conformers. Iso-value 0.03.

Figure S47. Frontier orbital plots of open conformers.

Figure S48. Frontier orbital plots of open conformers.

3.1. Optimized Structures

3.1.1. PTrz'

closed-PTrz'

HF zero-point energy = -2240.7802001 Zero-point correction= 0.917806 (Hartree/Particle) Thermal correction to Energy= 0.972759 Thermal correction to Enthalpy= 0.973703 Thermal correction to Gibbs Free Energy= 0.824271 Sum of electronic and zero-point Energies=-2239.862394 Sum of electronic and Thermal Energies=-2239.807441 Sum of electronic and Thermal Enthalpies= -2239.806497 Sum of electronic and Thermal Free Energies=-2239.955929

С	-1.42656900	-0.07531400	0.02597100
С	-0.70195300	0.52516500	-1.02893300
С	0.68683800	0.62681900	-1.06228000
С	1.42645900	0.07554900	-0.02572600
С	0.70184100	-0.52491200	1.02919300
С	-0.68694400	-0.62656900	1.06253700
С	1.63695600	-0.96051500	2.04128600
С	-1.63705700	0.96066600	-2.04108200
Ν	-2.91173700	0.56785600	-1.75108300
Ν	-3.76472300	0.97407900	-2.64438800
Ν	-3.04310600	1.62996000	-3.54430600
С	-1.71871700	1.65357800	-3.22515800
Ν	2.91166000	-0.56783200	1.75121500
Ν	3.76465900	-0.97417900	2.64445000
Ν	3.04303300	-1.63003000	3.54438700
С	1.71861700	-1.65346600	3.22534000
В	-3.03301500	-0.09916700	-0.23449500
В	3.03292100	0.09921900	0.23465100
С	3.68969800	-2.19656100	4.71866800
С	-3.68975500	2.19639000	-4.71864500
С	4.03808100	-0.96924800	-0.49523100
С	5.42990700	-0.85211200	-0.26668600
С	6.32609100	-1.74751800	-0.85326700
С	5.90139400	-2.78368900	-1.67547900
С	4.53393800	-2.91796700	-1.87816200
С	3.60641300	-2.04472100	-1.30267200
С	3.46692700	1.66795300	0.15394300
С	3.87386600	2.18420900	-1.09778500
С	4.19963500	3.53480300	-1.23881700
С	4.13230300	4.42604400	-0.17528500
С	3.67971600	3.93131200	1.04196100
С	3.33535200	2.58957700	1.21511300
С	-3.46676000	-1.66797300	-0.15376900
С	-3.33488800	-2.58964200	-1.21486800
С	-3.67886400	-3.93146100	-1.04162100
С	-4.13135000	-4.42623300	0.17565100
С	-4.19900600	-3.53492500	1.23910200
С	-3.87362800	-2.18424300	1.09797100
С	-4.03838900	0.96920400	0.49522500
С	-3.60694200	2.04477500	1.30262700
С	-4.53462200	2.91818300	1.87765000
С	-5.90200800	2.78392200	1.67456100

С	-6.32649800	1.74753200	0.85249600
С	-5.43017000	0.85198300	0.26638000
Н	1.18473200	1.11676200	-1.89103300
Н	-1.18484000	-1.11654000	1.89127300
Н	-0.98686900	2.15286400	-3.83426900
Н	0.98675500	-2.15269200	3.83448300
Н	7.38762900	-1.62976800	-0.65633700
Н	4.17095900	-3.73370400	-2.49628500
Н	4.51109700	3.89824200	-2.21392600
Н	3.57159000	4.61231400	1.88105000
Н	-3.57051000	-4.61250000	-1.88065000
Н	-4.51042000	-3.89836900	2.21422500
Н	-4.17181500	3.73401200	2.49575000
Н	-7.38798500	1.62972800	0.65531600
С	-6.03609100	-0.24529300	-0.58238900
Н	-6.08397300	-1.18717400	-0.02994900
Н	-7.05198600	0.02938600	-0.87785000
Н	-5.45955800	-0.44087000	-1.48413800
С	-2.15122700	2.32139600	1.60854300
Н	-1.70128800	1.51754400	2.19516300
Н	-1.54682700	2.41550600	0.70549300
Н	-2.05650500	3.24871300	2.17825900
С	-3.99298400	-1.32912900	2.34276700
Н	-3.19546200	-0.59070000	2.42061400
Н	-4.92805900	-0.76358800	2.34934800
Н	-3.97041900	-1.96186300	3.23412800
С	-2.78956300	-2.19817900	-2.57053400
Н	-3.47406500	-1.54086600	-3.11261900
Н	-1.83316800	-1.67910100	-2.47656400
Н	-2.62771000	-3.08789900	-3.18276600
С	2.15060600	-2.32142600	-1.60808600
Н	1.54650100	-2.41537000	-0.70482700
Н	1.70044700	-1.51770600	-2.19472100
Н	2.05573200	-3.24885900	-2.17758700
С	6.03608800	0.24490200	0.58224000
Н	7.05186500	-0.03014100	0.87777200
Н	6.08434700	1.18681500	0.02987900
Н	5.45954300	0.44059400	1.48394800
С	3.99289100	1.32918300	-2.34267600
Н	4.92788700	0.76351000	-2.34947200
Н	3.19525500	0.59087600	-2.42046000
Н	3.97026500	1.96200500	-3.23397300
С	2.78997000	2.19816500	2.57077100
Н	1.83348300	1.67926100	2.47679700
Н	3.47436000	1.54071100	3.11283300
Н	2.62828200	3.08789400	3.18303400
С	-6.88619100	3.71660600	2.33209000
Н	-7.18275200	3.34277900	3.31852300
Н	-6.45355900	4.71026800	2.47478500
Н	-7.79475500	3.81754400	1.73292100
С	-4.53260200	-5.87013400	0.33359800
Н	-5.59107300	-6.01357000	0.08901500
Н	-3.95265900	-6.51600300	-0.33095000
Н	-4.38457000	-6.21058000	1.36169200
С	4.53399400	5.86983300	-0.33313900
Н	3.95438400	6.51581500	0.33159000

Н	5.59255700	6.01289600	-0.08873600
Н	4.38588400	6.21044600	-1.36116600
С	6.88536700	-3.71618900	-2.33358400
Н	6.45367200	-4.71060800	-2.47387700
Н	7.17941600	-3.34354000	-3.32121300
Н	7.79526900	-3.81509400	-1.73612000
Н	3.38264400	-3.23627300	4.83288800
Н	4.76441100	-2.14211700	4.56075000
Н	3.41430900	-1.62641800	5.60731600
Н	-4.76447500	2.14167500	-4.56086800
Н	-3.38294200	3.23618300	-4.83277800
Н	-3.41411000	1.62635500	-5.60728300

half-open-PTrz'

HF zero-point energy = -2240.7773578 Zero-point correction= 0.915675 (Hartree/Particle) Thermal correction to Energy= 0.971752 Thermal correction to Enthalpy= 0.972696 Thermal correction to Gibbs Free Energy= 0.821270 Sum of electronic and zero-point Energies= -2239.805606 Sum of electronic and thermal Energies= -2239.805606 Sum of electronic and thermal Enthalpies= -2239.804662 Sum of electronic and thermal Free Energies= -2239.956088

С	1.42530200	-0.55530000	0.19333900
С	0.79475200	0.50544000	0.88911700
С	-0.58452200	0.68776600	0.84363000
С	-1.40132800	-0.18954000	0.13627300
С	-0.76459600	-1.25409400	-0.53288000
С	0.61025800	-1.45662900	-0.49318000
С	-1.75538900	-2.00452000	-1.27012600
С	1.64065200	1.42217800	1.65538000
Ν	2.56873300	0.97247900	2.54994400
Ν	3.27698900	1.97379600	2.97682300
Ν	2.81554500	3.08165200	2.36899300
С	1.78812500	2.78398900	1.54508200
Ν	-2.97708300	-1.39870200	-1.21625400
Ν	-3.88529400	-2.06810800	-1.86307600
Ν	-3.25175500	-3.11812600	-2.36813300
С	-1.93045100	-3.13356100	-2.03340000
В	2.96868900	-0.62836000	-0.05231300
В	-2.99878000	-0.10881200	-0.17318900
С	-3.98777900	-4.10402000	-3.14592800
С	3.51848600	4.34196300	2.50941100
С	-4.12573200	-0.58777400	0.91006200
С	-5.49223700	-0.41413300	0.58664200
С	-6.48947100	-0.81633000	1.47605600
С	-6.19244600	-1.39881300	2.70270200
С	-4.85234300	-1.59763300	3.00807300
С	-3.82694500	-1.21479200	2.13850500
С	-3.21398300	1.36590600	-0.83819400
С	-3.52472200	2.44212800	0.02463600
С	-3.65864700	3.73879700	-0.47655000
С	-3.48713000	4.03309400	-1.82310100
С	-3.13118900	2.98474600	-2.66320300

С	-2.97865200	1.67852900	-2.19488800
С	3.65858700	-2.03239200	-0.12378700
С	3.47946500	-2.96949200	0.91950800
С	4.11704600	-4.20698100	0.85634600
С	4.91344700	-4.56798600	-0.22769400
С	5.07258600	-3.64822200	-1.26145800
Ċ	4.47816600	-2.38842500	-1.21717000
Ċ	3,75599300	0.70550800	-0.34156000
Č	3,27936700	1.65430400	-1.27290000
c	3 95737700	2 85704100	-1 45307400
c	5 09763900	3 17270700	-0 71611300
c	5 56971600	2 23045900	0 19177400
c	4 93595900	1 00119100	0.37302300
н	-1 01992400	1 52405100	1 37683100
ц	1.01002400	-2 2708/800	-1 03178700
н	1 30503600	3 51602500	0 92269900
ц	1.00000000	2.01966000	2 24526200
ц Ц	7 52905700	0 66041000	1 10760900
	-7.52695700	-0.00941900	1.19709000
	-4.59093200	-2.07342300	3.94838900
	-3.90047400	4.54245000	0.21291000
н	-2.94819200	3.18878500	-3.71410500
н	3.98/13000	-4.90/31/00	1.6/564100
н	5.681/3400	-3.91463500	-2.11961600
н	3.58329300	3.56860400	-2.18319000
Н	6.45645400	2.45323300	0.77679200
С	5.51589700	0.02874200	1.37047300
Н	5.85197000	-0.88512400	0.87522000
Н	6.36336100	0.47603300	1.89360000
Н	4.76897800	-0.25530400	2.11351100
С	2.03897800	1.40873900	-2.10171700
Н	1.99019800	0.37933400	-2.46211800
Н	1.12879800	1.57766800	-1.52037900
Н	2.01857000	2.07615000	-2.96614600
С	4.72921600	-1.43506800	-2.36363700
Н	3.80244600	-0.99357100	-2.73711100
Н	5.36321000	-0.60341200	-2.04777200
Н	5.22089400	-1.95132500	-3.19113400
С	2.63995300	-2.65165900	2.13602100
Н	2.81957300	-1.64048800	2.50681200
Н	1.57434000	-2.70977500	1.89941600
Н	2.85005400	-3.36220100	2.93871100
С	-2.41441700	-1.50134500	2.59486400
Н	-1.84977800	-2.06800100	1.85291300
Н	-1.85135900	-0.58302300	2.77433600
Н	-2.42639400	-2.07515000	3.52423800
С	-5.95808800	0.23343300	-0.69988500
Н	-7.00246300	-0.02612900	-0.89158000
Н	-5.88303600	1.32227800	-0.64045300
Н	-5.36630600	-0.07444800	-1.55955200
С	-3.74343500	2.27275000	1.51390900
Ĥ	-4.75200400	1.91004400	1.72841100
Н	-3.06261300	1.54874700	1.95913600
н	-3.61049900	3,23135400	2.02193100
С	-2.52309700	0.64730700	-3.20374600
н	-1 63264200	0 11930500	-2 85554100
н	-3 29582700	-0.09869400	-3 40580400
н	-2 27407700	1 13165500	-4 15041500
			1.100+1000

С	-7.28279200	-1.78493800	3.66839900
Н	-6.95040800	-2.57847300	4.34233200
Н	-7.57971000	-0.93023100	4.28632700
Н	-8.17469200	-2.13105800	3.13930800
С	-3.68129300	5.43030200	-2.35296300
Н	-3.00182100	5.63601200	-3.18443200
Н	-4.70315200	5.57266900	-2.72199700
Н	-3.50748900	6.17531300	-1.57235500
С	5.81915100	4.47871700	-0.92808600
Н	5.11629200	5.29426600	-1.11917500
Н	6.42714800	4.73921100	-0.05819900
Н	6.49010900	4.41924300	-1.79183900
С	5.60989500	-5.90310400	-0.26449100
Н	5.78586100	-6.22871600	-1.29250900
Н	6.58331300	-5.84696600	0.23504100
Н	5.02254800	-6.66900100	0.24798400
Н	2.79909400	5.15737700	2.58922000
Н	4.12060600	4.28760400	3.41441700
Н	4.16651200	4.49477500	1.64316100
Н	-4.98806700	-3.71086400	-3.31229900
Н	-3.48526300	-4.26296800	-4.10035400
Н	-4.04586200	-5.04293200	-2.59338200

open-PTrz'

HF zero-point energy = -2240.7732901 Zero-point correction= 0.913416 (Hartree/Particle) Thermal correction to Energy= 0.970632 Thermal correction to Enthalpy= 0.971577 Thermal correction to Gibbs Free Energy= 0.817356 Sum of electronic and zero-point Energies=-2239.859874 Sum of electronic and Thermal Energies=-2239.802658 Sum of electronic and Thermal Enthalpies= -2239.801713 Sum of electronic and Thermal Free Energies=-2239.955934

С	1.37461000	0.27786500	0.05218700
С	0.90563200	-0.91819800	-0.52591500
С	-0.44476800	-1.24765500	-0.46182800
С	-1.38334700	-0.39503800	0.12863400
С	-0.91298800	0.79520900	0.71807200
С	0.43814300	1.12006500	0.66105300
С	-1.88033600	1.68390800	1.36571900
С	1.86841900	-1.78252500	-1.21593300
Ν	2.66219900	-1.30910100	-2.22076500
Ν	3.52869100	-2.21876000	-2.55134800
Ν	3.30463500	-3.29044400	-1.77139700
С	2.27133500	-3.06442400	-0.93120800
Ν	-2.76515100	1.23031400	2.30085900
Ν	-3.60792100	2.17506000	2.59170900
Ν	-3.27784100	3.25006500	1.85460400
С	-2.20022500	2.99030200	1.08364300
В	2.89667000	0.64219000	0.17206900
В	-2.90469800	-0.69650000	-0.10899100
С	-4.14292500	4.41351200	1.82689300
С	4.22644900	-4.40984600	-1.78077000
С	-3.83545100	0.48439900	-0.57739100
С	-5.05812800	0.72612700	0.08532100

С	-5.82102000	1.84399900	-0.25054800
С	-5.43635800	2.71841000	-1.26227800
С	-4.25233500	2.44843700	-1.94563600
С	-3.44812700	1.36078400	-1.61434400
С	-3.41917800	-2.16685800	0.01970900
С	-4.19072600	-2.75923700	-1.00539900
С	-4.63747800	-4.07128400	-0.87055100
С	-4.37889600	-4.81719500	0.27759500
С	-3.63048000	-4.22522100	1.29118600
Ċ	-3.13443800	-2.92760900	1.17636300
Ċ	3.31477600	2.14030000	-0.00067200
Ċ	2,89013800	2.88043500	-1.12785800
c	3 28625400	4 20844400	-1 27337900
Č	4.07143400	4.84938400	-0.31827700
c	4 47074800	4 12164300	0.80003000
c	4 12419600	2 78200300	0.96272900
c	3 93552000	-0 47979400	0.54624100
c	3 70008000	-1 37929500	1 60860900
c	4 60653400	-2 /0269500	1.000000000
c	5 74891500	-2 58660600	1.07240700
c	5 081/1000	-2.00000000	0.05494000
c	5.30141300	0.62724400	0.03494000
Ц	0.70014200	-0.03724400	-0.21734000
	0.79014200	2.10377300	1 1 1 9 6 9 0 0 0
	1 05006700	2.04135200	0.19610500
	1.95900700	-3.77424300	-0.18019500
п	-1.00230200	3.09740400	0.37777400
	-0.74149100	2.03155500	0.29337200
н	-3.94493900	3.10437600	-2.75455000
н	-5.20789900	-4.51989600	-1.67788000
н	-3.42504100	-4.78911500	2.195/2900
н	2.97165800	4.75723600	-2.15564400
н	5.07238100	4.60727700	1.56189900
н	4.41590800	-3.07513200	2.70359800
Н	6.86390900	-1.81822800	-0.56446900
C	5.44401000	0.29330900	-1.35789000
н	5.65551000	1.30029400	-0.990/9000
н	6.3154/300	-0.06988900	-1.9058/400
Н	4.60889800	0.36636800	-2.0559/300
С	2.4/919900	-1.26628600	2.49215400
н	2.26261800	-0.22939200	2.75727700
Н	1.58778000	-1.64894000	1.98839100
Н	2.62074000	-1.83278800	3.41500500
С	4.62551700	2.05489000	2.19008300
Н	3.82758200	1.50318900	2.69209300
Н	5.39137800	1.32246500	1.92430100
Н	5.05472500	2.76082500	2.90432800
С	2.04457100	2.25957100	-2.21701300
Н	2.38855300	1.25878700	-2.48657700
Н	1.00623300	2.15367500	-1.89177300
Н	2.05839900	2.88647100	-3.11148900
С	-2.17251300	1.15766500	-2.39998600
Н	-1.29966800	1.50940700	-1.84352700
Н	-1.99254600	0.10404200	-2.62076400
Н	-2.21466200	1.70257500	-3.34566600
С	-5.55143000	-0.18178800	1.18483100
Н	-6.44765400	0.23281100	1.65046700
н	-5.78646100	-1.17457200	0.79409200

н	-4.79210100	-0.30517500	1.95861400
С	-4.54569300	-2.00678600	-2.26791500
Н	-5.29418800	-1.23690600	-2.06548200
Н	-3.68083500	-1.49510100	-2.69539700
Н	-4.94643900	-2.68943200	-3.02034600
С	-2.33531900	-2.35796000	2.32622400
Н	-1.27225600	-2.31151200	2.07482000
Н	-2.64072300	-1.33962000	2.57570000
Н	-2.44778000	-2.98432900	3.21408200
С	-6.29727200	3.89656800	-1.63899300
Н	-6.88598700	4.24536300	-0.78655500
Н	-5.69157400	4.72817200	-2.00840700
Н	-7.00150400	3.62716000	-2.43347500
С	6.72293400	-3.69526900	1.40064900
Н	6.20635200	-4.59252000	1.75218100
Н	7.31356100	-3.95582700	0.51881900
Н	7.42311100	-3.39428700	2.18731900
С	4.50367300	6.28008200	-0.50495900
Н	4.64091400	6.77952000	0.45710900
Н	5.45763700	6.33010000	-1.04135100
Н	3.76957400	6.84180300	-1.08761300
С	-4.92081300	-6.21446600	0.42699400
Н	-5.95963100	-6.19231900	0.77405500
Н	-4.90606100	-6.74730700	-0.52714400
Н	-4.34098500	-6.78701500	1.15450600
Н	-3.53855900	5.32065400	1.80361700
Н	-4.78549400	4.36558700	0.94461800
Н	-4.75267400	4.39615100	2.72824200
Н	4.93624200	-4.30111500	-0.95734400
Н	3.67157100	-5.34277600	-1.67898000
Н	4.75839500	-4.39565400	-2.73018500

3.1.2. Trz-Me'

closed-Trz-Me'

HF zero-point energy = -2703.0629056 Zero-point correction = 1.076947 (Hartree/Particle) Thermal correction to Energy= 1.141445 Thermal correction to Enthalpy= 1.142389 Thermal correction to Gibbs Free Energy= 0.968649 Sum of electronic and zero-point Energies=-2701.985958 Sum of electronic and Thermal Energies=-2701.921461 Sum of electronic and Thermal Enthalpies= -2701.920516 Sum of electronic and Thermal Free Energies=-2702.094257

С	1.14630900	0.85016500	0.06026600
С	1.23087400	-0.55613100	-0.05779700
С	0.12564500	-1.40306700	-0.09638500
С	-1.14622200	-0.85015100	-0.06043500
С	-1.23078400	0.55614000	0.05765500
С	-0.12555700	1.40308000	0.09625300
С	-2.62325400	0.92630000	0.16746200
С	2.62335000	-0.92630600	-0.16755100
Ν	3.43080400	0.17320000	-0.23733900
Ν	4.68579100	-0.14286500	-0.32976600
Ν	4.71355700	-1.47507600	-0.34703700

С	3.45856200	-2.01141800	-0.25070200
Ν	-3.43069400	-0.17321400	0.23723600
Ν	-4.68567500	0.14284000	0.32974000
Ν	-4.71345100	1.47505300	0.34703900
С	-3.45846700	2.01140800	0.25065400
В	2.59873300	1.58369100	0.02714500
В	-2.59863700	-1.58369400	-0.02728100
С	-5.95284200	2.16692700	0.46856200
Ċ	-7.02299200	1.55578000	1.11658700
Ċ	-8.22366800	2.24102900	1.22807500
č	-8.37574500	3.53378700	0.71743100
c	-7 28685100	4 12051700	0.07169300
č	-6.07951800	3 44521300	-0.06314400
č	5 95294700	-2 16696200	-0 46848800
c	6 07958300	-3 44524500	0.06323500
c	7 28691700	-4 12056200	-0.07152900
c	8 37585200	-3 53384600	-0 71721/00
c	8 22381600	-2 2/109200	-0.71721400
ĉ	7 02313800	-2.24103200	-1.11645000
ĉ	-3 32224000	-2 12125500	-1.30610500
ĉ	4 56069100	2 70696000	1 29452200
0	-4.30000100	-2.79000900	-1.20402300
C	-5.21966400	-3.20805200	-2.42103700
C	-4.70139300	-3.09/14100	-3.69853800
	-3.50169100	-2.40695500	-3.81298600
	-2.81625100	-1.91485700	-2.69859500
0	-2.53780800	-2.63930400	1.21386300
0	-2.13034100	-3.96629000	0.94654000
C	-2.01964400	-4.89848100	1.98054300
C	-2.29065000	-4.57095400	3.30305800
C	-2.63270800	-3.25163100	3.5/468100
C	-2./3965400	-2.29104/00	2.56/42300
C	2.53/92800	2.63931400	-1.21399100
С	2.73983300	2.29108900	-2.56/54900
С	2.63289800	3.25169000	-3.57479300
С	2.29079100	4.57099700	-3.30315800
С	2.01972100	4.89848900	-1.98064600
С	2.13040200	3.96627900	-0.94665800
С	3.32217900	2.12127300	1.39613600
С	2.81601100	1.91477100	2.69844100
С	3.50123800	2.40685300	3.81296700
С	4.70090200	3.09714100	3.69873500
С	5.21934900	3.26877100	2.42132000
С	4.56057800	2.79700200	1.28467400
Н	0.25487600	-2.47705800	-0.16512500
Н	-0.25478900	2.47706900	0.16502200
Н	3.28317200	-3.07049800	-0.26581400
Н	-3.28308400	3.07048800	0.26577800
Н	-6.90710900	0.55795200	1.51558500
Н	-9.05895500	1.76412000	1.72731500
Н	-7.38749600	5.11465400	-0.34702200
н	-5.25559100	3.90048600	-0.59670900
н	5.25562300	-3.90050500	0.59676100
н	7.38752900	-5.11469500	0.34720200
н	9.05913400	-1.76419400	-1.72706800
н	6.90728900	-0.55800300	-1.51546900
Н	-6.16863200	-3.78274200	-2.30004600
н	-3.08563200	-2.23436800	-4.80105700

Н	-1.70647300	-5.91050800	1.74037900
Н	-2.80031100	-2.95136400	4.60484700
Н	2.80054700	2.95144700	-4.60495800
Н	1.70650600	5.91050100	-1.74047500
Н	3.08503900	2.23418100	4.80096500
Н	6.16828800	3.78295400	2.30050300
С	5.22931000	3.08469900	-0.04280000
H	4,78671900	3.96206500	-0.52154800
н	6 29347500	3 28146800	0 11143100
н	5 13249500	2 26227800	-0 74767400
C	1 52584800	1 17656600	2 98023400
Ц	0.65060600	1 71015900	2.50025400
	1.50797200	0.10410000	2.00209000
	1.50787300	0.18418800	2.52831900
н	1.38634900	1.06154400	4.05758200
C	1.80012500	4.46286000	0.44596100
н	1.263/0/00	3./2091100	1.03/15000
н	2.70509800	4.70071600	1.01042500
Н	1.18855300	5.36701700	0.38380600
С	3.03831500	0.87549500	-3.00883700
Н	4.03899000	0.55234300	-2.71045900
Н	2.32023200	0.17086400	-2.58405300
Н	2.97636500	0.79909000	-4.09643100
С	-1.52609500	-1.17675900	-2.98068600
Н	-1.50796500	-0.18434600	-2.52885900
Н	-0.65990300	-1.71038100	-2.58348600
н	-1.38680200	-1.06183300	-4.05807200
С	-5.22923400	-3.08439000	0.04307600
н	-6 29344100	-3 28108500	-0 11097000
н	-4 78663800	-3 96174400	0.52183800
ц	-4.700000000	-2.26100700	0.32103000
0	1 90012000	4 46202100	0.74703700
	2 70514000	4.40292100	-0.44008000
	-2.70514000	-4.70077200	-1.01050100
	-1.26372600	-3.72100500	-1.03/31400
Н	-1.18858900	-5.36709200	-0.38392400
C	-3.03808500	-0.8/543800	3.00869500
н	-2.32000100	-0.17083400	2.58387000
Н	-4.03876200	-0.55226700	2.71034600
Н	-2.97609300	-0.79901500	4.09628600
С	2.21505100	5.60196900	-4.39947300
Н	3.18969300	6.07572800	-4.56208500
Н	1.90870400	5.14958000	-5.34639800
Н	1.50359400	6.39300700	-4.14866900
С	5.40507900	3.64974700	4.91092200
Н	5.07435700	4.67233600	5.12471700
н	5.19723900	3.04534900	5.79762100
н	6.48706900	3,68027400	4,75877800
С	-5 40579800	-3 64975500	-4 91058800
й	-5 19798600	-3 04546300	-5 79736400
Ľ	5.07524500	4 67241000	5.10100400
μ	-5.07524500	-7.07241000	-0.1240000
	-0.40777400	-0.00012000	4 2002020
U II	-2.21489900	-3.00190400	4.39939300
Н	-1.90829800	-0.14954200	0.34625000
H	-3.18960000	-6.0/547600	4.56219900
Н	-1.50363400	-6.39308100	4.14848600
С	-9.67552400	4.27560000	0.87941900
Н	-10.52917000	3.61197100	0.72284900
Н	-9.76179400	4.68927700	1.88955200

C9.67562200-4.27568800-0.87913700H9.74770200-5.10423600-0.17195100H9.76175600-4.68969900-1.88914600H10.52927600-3.61199400-0.72290400	н	-9.74749400	5.10437900	0.17249200
H9.74770200-5.10423600-0.17195100H9.76175600-4.68969900-1.88914600H10.52927600-3.61199400-0.72290400	С	9.67562200	-4.27568800	-0.87913700
H 9.76175600 -4.68969900 -1.8891460 H 10.52927600 -3.61199400 -0.7229040	Н	9.74770200	-5.10423600	-0.17195100
H 10.52927600 -3.61199400 -0.7229040	Н	9.76175600	-4.68969900	-1.88914600
	Н	10.52927600	-3.61199400	-0.72290400

half-open-Trz-Me'

HF zero-point energy = -2703.0625689 Zero-point correction = 1.075141 (Hartree/Particle) Thermal correction to Energy= 1.140691 Thermal correction to Enthalpy= 1.141636 Thermal correction to Gibbs Free Energy= 0.967513 Sum of electronic and zero-point Energies=-2701.987427 Sum of electronic and Thermal Energies=-2701.921877 Sum of electronic and Thermal Enthalpies= -2701.920933 Sum of electronic and Thermal Free Energies=-2702.095056

С	-0.95986600	1.23849100	0.37121300
С	-1.18551000	-0.11245700	0.73289500
С	-0.14992500	-1.04159300	0.76229300
С	1.15700200	-0.66676200	0.46500100
С	1.37089700	0.67956800	0.11066300
С	0.35137400	1.62448800	0.08768500
С	2.75887400	0.85341000	-0.25314700
С	-2.55463100	-0.51565000	1.06544800
Ν	-3.29566900	0.13547200	2.01267400
Ν	-4.51246300	-0.30438800	1.98869400
Ν	-4.58602000	-1.24684600	1.01845900
С	-3.37311000	-1.41476500	0.43447400
Ν	3.41960200	-0.34193100	-0.27195400
Ν	4.67123600	-0.20707200	-0.58758000
Ν	4.84127600	1.09588300	-0.80619300
С	3.68375400	1.79996500	-0.61328700
В	-2.10870200	2.25377300	0.05203000
В	2.49427900	-1.58410500	0.32652600
С	6.11591400	1.60006500	-1.19507100
С	6.99592800	0.78243900	-1.89900400
С	8.23426600	1.28613600	-2.26846400
С	8.60926400	2.59779100	-1.96138300
С	7.70765100	3.39341500	-1.25358600
С	6.46739800	2.90321300	-0.86216400
С	-5.82550200	-1.82410400	0.64750300
С	-5.85094000	-2.99788000	-0.09862200
С	-7.07005500	-3.52237700	-0.51285100
С	-8.27455000	-2.90219400	-0.18214300
С	-8.22262600	-1.73073800	0.57881800
С	-7.01583500	-1.18506900	0.98895700
С	3.37446100	-2.03468600	1.62979400
С	4.49664600	-2.87252700	1.42892500
С	5.29271800	-3.26446500	2.50610900
С	5.02409500	-2.85877700	3.80777500
С	3.93653200	-2.01760800	4.00346200
С	3.12236600	-1.59728300	2.94802400
С	2.09145700	-2.76741600	-0.72039800
С	1.57641100	-3.97499100	-0.19478400
С	1.16052100	-5.00002500	-1.04726500
С	1.22188900	-4.88299200	-2.43019200
С	1.67668000	-3.67592800	-2.94745800
С	2.09001100	-2.62624900	-2.12504800
С	-1.89315800	3.76347200	0.41020500

С	-1.50858600	4.13981400	1.71717300
С	-1.32878000	5.48667700	2.02574500
С	-1.49143200	6.48647200	1.06986900
С	-1.85715000	6.10968300	-0.22022700
С	-2.07824500	4.77543300	-0.55713700
С	-3.38647900	1.73973100	-0.71008800
С	-3.28106000	0.92373000	-1.85628300
Č	-4.42734500	0.39543900	-2.44551900
Ĉ	-5 69575100	0 62727400	-1 91872300
č	-5 79770600	1 46358300	-0.81150400
č	-1 67539500	2 03244600	-0.21319/00
ŭ	0.27112200	2.05244000	1 02100600
	0.57112300	2,65260500	0.1020000
	0.00004200	2.05300500	-0.19260000
н	-3.21358/00	-2.05624900	-0.41153300
н	3.62641600	2.86223100	-0.75830500
н	6.70782300	-0.23110200	-2.13999800
Н	8.92235500	0.64898200	-2.81150100
Н	7.98436500	4.40687000	-0.98896900
Н	5.79352000	3.52138700	-0.28370600
Н	-4.92873800	-3.50212700	-0.35475100
Н	-7.08257800	-4.43182300	-1.10202700
Н	-9.14552100	-1.22511800	0.83902000
Н	-6.97737700	-0.26632500	1.55469600
н	6.14924700	-3.90532300	2.31832300
Н	3,71543900	-1.66635100	5.00673600
н	0 77161800	-5 91568400	-0.61143900
н	1 69501000	-3 53583700	-4 02432300
Ц	-1.05388100	5 76186500	3 03033400
Ц	-1.00000100	6 87/15/00	-0.000000-00
	4 20710400	0.07410400	2 22220400
	-4.32710400	1 67097500	-3.33320400
	-6.77722500	1.6/08/500	-0.39373700
C .	-4.86/96500	2.91556600	0.99515800
н	-4.5195/000	3.93188300	0.79894400
Н	-5.92212700	2.95529500	1.27724900
Н	-4.30185200	2.53392800	1.84718300
С	-1.94550700	0.58986900	-2.48164300
Н	-1.27760300	1.45350700	-2.50032300
Н	-1.42585000	-0.19229700	-1.92162200
Н	-2.08186200	0.23977800	-3.50724600
С	-2.50667900	4.44984400	-1.96984500
Н	-1.88502900	3.66879000	-2.41434100
Н	-3.53303600	4.07693200	-1.98920800
Н	-2.44613400	5.33721100	-2.60371000
С	-1.32506700	3,11692500	2,81549800
Ĥ	-2.10737400	2.35539800	2.80348500
н	-0.37567100	2 58750600	2 70077100
н	-1 32703900	3 60459500	3 79296500
C	1 97750000	-0.67726800	3 30781300
ŭ	1.07730000	0.07720000	2 72005100
	1.99536300	1 1 4 1 9 2 7 0 0	2.73003100
	1.00847600	-1.14183700	3.11505700
Н	2.02079900	-0.41719500	4.36778800
C	4.88485100	-3.41993400	0.07207500
н	5.92526900	-3.75455000	0.08805600
н	4.256/5900	-4.2/213300	-0.20000200
Н	4.77482500	-2.68492100	-0.72221100
С	1.44903500	-4.24210700	1.29067200
Н	2.40551100	-4.54484800	1.72417400
Н	1.13000600	-3.36258700	1.84869200
Н	0.72626300	-5.04320100	1.46501800
С	2.49494100	-1.34304700	-2.81679100
Н	1.95066900	-0.48613200	-2.41355900
Н	3.56309600	-1.13829800	-2.70998400
Н	2.27440100	-1.40515400	-3.88455400

С	-6.91373200	-0.03583700	-2.50343900
Н	-7.79612600	0.60138800	-2.40529700
Н	-6.76745200	-0.26804000	-3.56110000
Н	-7.12733400	-0.97295600	-1.97916300
С	-1.31172700	7.93767300	1.43169300
Н	-1.01661900	8.52829300	0.56109700
Н	-2.24643300	8.36061300	1.81599500
Н	-0.55326500	8.05969200	2.20896700
С	0.81280700	-6.01786900	-3.33311100
Н	0.38870100	-5.64514300	-4.26929000
Н	1.67306700	-6.64607600	-3.59008900
Н	0.07169900	-6.65890500	-2.84891200
С	5.87039400	-3.32685500	4.96332500
Н	5.85372700	-2.60399600	5.78288900
Н	5.50239600	-4.28053200	5.35792900
Н	6.90857400	-3.47817900	4.65633500
С	-9.59463000	-3.48526100	-0.61156900
Н	-9.46788300	-4.17046800	-1.45226600
Н	-10.05857400	-4.04454100	0.20771100
Н	-10.29382200	-2.69978600	-0.90894900
С	9.94380700	3.13790200	-2.40071100
Н	9.92094100	3.41043500	-3.46093600
Н	10.21462500	4.03001200	-1.83281400
Н	10.73176600	2.39232600	-2.27078000

open-Trz-Me'

HF zero-point energy = -2703.0548771 Zero-point correction = 1.072582 (Hartree/Particle) Thermal correction to Energy= 1.139727 Thermal correction to Enthalpy= 1.140672 Thermal correction to Gibbs Free Energy= 0.959823 Sum of electronic and zero-point Energies=-2701.982295 Sum of electronic and Thermal Energies=-2701.915150 Sum of electronic and Thermal Enthalpies= -2701.914206 Sum of electronic and Thermal Free Energies=-2702.095054

С	1.12011000	0.88603100	0.12123200
С	1.31109800	-0.49664400	-0.10254500
С	0.20620200	-1.33940800	-0.20328200
С	-1.11845000	-0.88688300	-0.12311400
С	-1.30951800	0.49575700	0.10012100
С	-0.20465100	1.33841600	0.20162600
С	-2.63720000	1.10969500	0.18414600
С	2.63865200	-1.11058800	-0.18837500
Ν	2.93529900	-2.25573300	0.50034100
Ν	4.18373400	-2.54905500	0.34037500
Ν	4.72622800	-1.60368000	-0.47257400
С	3.77952900	-0.70176200	-0.82944900
Ν	-2.93333400	2.25344200	-0.50708900
Ν	-4.18196500	2.54687600	-0.34893400
Ν	-4.72510600	1.60299500	0.46527800
С	-3.77865900	0.70184500	0.82481000
В	2.23668700	1.95459300	0.41757000
В	-2.23528100	-1.95564800	-0.41782900
С	-6.10868500	1.61782700	0.77584300
С	-6.88981300	2.71302600	0.41018700
С	-8.24914700	2.70738600	0.69166600
С	-8.85776400	1.62862600	1.33677100
С	-8.05380500	0.54797900	1.70081800
С	-6.69329200	0.53194000	1.42207700
С	6.10954400	-1.61798500	-0.78437300

\mathbf{c}	6 60200500	0 52222500	1 12202000
C	0.09300300	-0.55255500	-1.43202000
С	8.05329700	-0.54783600	-1.71191600
õ	0.05017000	1 00770500	1 0 1770000
C	8.85817800	-1.62773500	-1.34773600
C	8 25071000	-2 20630000	-0 70121600
U	0.23071000	-2.70030000	-0.70121000
С	6.89165300	-2.71241900	-0.41846400
~	0 50704400	1 55001000	1 10005700
C	-3.58/24400	-1.55381300	-1.10335/00
C	4 81315800	1 082/0100	-0 53856500
9	-4.01313000	-1.302+0100	-0.00000000
С	-6.01323200	-1.46114700	-1.00796100
\sim	0.05570000	0 50701000	0.04100400
C	-0.000/0000	-0.52791800	-2.04128400
C	-4 85655500	-0 16838700	-2 64375000
č	1.00000000	0.10000700	2.01070000
С	-3.63285100	-0.66339700	-2.19579800
\sim	1 04200800	2 44450200	0.00010000
U	-1.94299600	-3.44400000	-0.02010200
С	-2.08969200	-4.47852700	-0.96987100
õ	1.00000000	5 70700700	0.00040000
C	-1.82200600	-5.79738700	-0.60943000
C	-1 43771900	-6 13879700	0 68500600
9	1.40771000	0.100/0700	0.00000000
С	-1.31676300	-5.11798600	1.62463100
\sim	1 54000000	2 70505700	1 00047600
U	-1.54292200	-3./0000/00	1.2094/000
С	1.94255800	3.44533500	0.02774400
č	1.01200000	0.71000000	4.07770500
C	1.53529800	3.79380900	-1.2///2500
C	1 29676800	5 12657200	-1 601/3800
ě	1.20070000	5.12057200	1.00140000
С	1.41794600	6.14152900	-0.65560300
\sim	1 00000500	E 7000000	0.00000100
C	1.80332500	5.79230200	0.03030100
С	2 08272600	4 47276200	0 98560500
õ	0.5000.4700	1 55404000	1 0000 1500
C	3.59004700	1.55164000	1.09994500
C	3 63774000	0 66058000	2 10166800
U	5.05774000	0.00030000	2.13100000
С	4.86242700	0.16597000	2.63743100
\sim	6 06050200	0 5060000	0 00006100
C	0.00052300	0.52659900	2.03320100
С	6 01587000	1 45988200	1 00024600
õ	4.01.470.000	1.10000200	0.50001000
C	4.814/3600	1.98080300	0.53321800
н	0 38610500	-2 39560/00	-0 35877300
	0.50010500	-2.0000+00	-0.00077000
Н	-0.38471000	2.39450200	0.35764700
	2 00100500	0 10000000	1 40001000
п	3.98102500	0.13968200	-1.46281000
н	-3 98076900	-0 13835500	1 45966100
	0.00070000	0.10000000	1.10000100
н	-6.42668800	3.54985400	-0.091/3000
ы	9 94042600	2 56212000	0 40471100
п	-0.04942000	3.30312900	0.40471100
н	-8.49914600	-0.30220600	2,20457500
	0 10007700	0.00004000	1 00500700
н	-6.10287700	-0.33324800	1.68526700
н	6 10191100	0 33227100	-1 69561600
	0.40774.000	0.00047400	0.04.077000
н	8.49771800	0.30217400	-2.21677800
н	8 85171100	-3 561/6/00	-0 /1/0/000
	0.00171100	0.00140400	0.+1+0+000
н	6.42948500	-3.54904700	0.08465200
ы	6 0/117200	1 76250000	0 52/01000
п	-0.94117300	-1.70358000	-0.55491000
н	-4.86870100	0.53456900	-3.47026600
	1 00000000	0.57005000	4.05570000
н	-1.92293000	-6.57905000	-1.355/3200
н	0 99909800	5 37852300	-2 61445300
	0.0000000	0.07002000	2.01445000
н	1.88993100	6.56738400	1.39125500
Ц	1 97601500	0 53726700	3 16360100
п	4.07021500	-0.53730700	3.40300400
Н	6.94285700	1.76280000	0.52563000
\sim	0.00000400	0 10000000	0.00707500
C	-2.38629400	-0.19226200	-2.90/3/500
н	-2 06477400	0 77669100	-2 51460700
	2.00177100	0.77000100	2.01100700
н	-1.55560000	-0.88853600	-2./9391400
н	-2 58818000	-0.06710700	-3 07/1/500
	-2.00010000	-0.00/10/00	-0.3/414000
С	-4.87261500	-2.93533100	0.63480400
Ū.	4 50550700	0 00001000	0.06177100
П	-4.52552700	-3.93301200	0.30177100
н	-4.23293700	-2.60974300	1.46054500
	F 00077000	0.04500000	1 00007400
н	-5.89677000	-3.01532300	1.0066/400
C	-2 5288/100	-1 10221000	-2 38808800
		1.10201000	2.00000000
Н	-3.57885500	-3.89207500	-2.41879200
н	-1 0571/200	-3 37/15200	-2 83285800
п	-1.33/14000	-0.07410200	-2.03203000
Н	-2.40178900	-5.07754500	-3.01477800
Ċ	1 20240200	2 74071600	2 27000000
U	-1.30349300	-2./40/1000	2.3/089000
н	-0.42067400	-2.23181000	2,28303900
	0 1 5 4 0 7 0 0 0	1 0001 4000	0.01105400
п	-2.1049/900	-1.90914200	∠.31135400

н	-1 /3711300	-3 20150600	3 35961600
\hat{c}	1 27227000	2 75506100	-2 36468700
ц	2 1/150800	1 98095500	-2.30400700
ü	2.14130000	2 24992500	2.30093000
Ц	1 42750000	2.24002000	-2.27900300
0	2 2022000	0 1000000	200451200
	2.39239000	0.10022900	2.90431600
п	1.00111900	0.88404600	2.79240400
	2.07100900	-0.76067600	2.01100300
	2.59557700	0.06255700	3.97098000
	4.8/111/00	2.93374800	-0.64027000
н	4.23013900	2.60/38/00	-1.464//500
н	4.52338900	3.93156300	-0.36645/00
Н	5.89444300	3.014///00	-1.01421/00
C	2.51828200	4.17/26900	2.40306500
н	1.9462/500	3.35558400	2.84099000
Н	3.56846800	3.87779900	2.43423600
Н	2.38895200	5.05810700	3.03544400
С	-7.35917900	0.10664500	-2.44174200
Н	-7.28044600	0.59502600	-3.41518400
Н	-8.16445000	-0.63166000	-2.48420400
Н	-7.64603000	0.86543500	-1.70521800
С	1.16377200	7.57858800	-1.02752700
Н	0.84491500	8.15949000	-0.15906000
Н	2.07298200	8.04546300	-1.42217300
Н	0.39341900	7.65495600	-1.79858700
С	7.36492500	-0.10751300	2.43159800
Н	7.28782500	-0.59644900	3.40489400
Н	7.65135100	-0.86571600	1.69431200
Н	8.16973600	0.63133300	2.47342300
С	-10.33971200	1.61912600	1.60378200
Н	-10.71486200	2.62992700	1.77943700
Н	-10.88729100	1.20827400	0.74867700
Н	-10.57953400	1.00556500	2.47503000
С	10.33988000	-1.61769300	-1.61607900
Н	10.57884000	-1.00276200	-2.48659000
Н	10.88821000	-1.20815600	-0.76082600
Н	10.71496400	-2.62819000	-1.79365200
Н	-1.03446000	-5.36538100	2.64311200
С	-1.13285400	-7.56688400	1.05218300
Ĥ	-1.68387000	-8.26456400	0.41715300
Н	-0.06509800	-7.77764600	0.92774700
н	-1.38770500	-7.76885100	2.09534300
•••			

3.1.3. Trz-OMe'

closed-Trz-OMe'

HF zero-point energy = -2853.5332029 Zero-point correction = 1.087225 (Hartree/Particle) Thermal correction to Energy= 1.153159 Thermal correction to Enthalpy= 1.154103 Thermal correction to Gibbs Free Energy= 0.979775 Sum of electronic and zero-point Energies=-2852.445978 Sum of electronic and Thermal Energies=-2852.380044 Sum of electronic and Thermal Enthalpies= -2852.379100 Sum of electronic and Thermal Free Energies=-2852.553428

С	-1.02888100	-0.98878400	0.03128200
С	-1.28809100	0.39676700	-0.07649100
С	-0.29729800	1.37573300	-0.09103200
С	1.03325000	0.98604600	-0.04000000

С	1.29235700	-0.39940800	0.06766500
С	0.30157900	-1.37849500	0.08218700
С	2.71849800	-0.59310300	0.19397100
С	-2.71431700	0.59030100	-0.20355500
Ň	-3 37594600	-0 59941700	-0.30796400
N	-4 66215100	-0 44062500	-0.39/77800
N	4 95774000	0.97625400	0.25664600
	-4.65774900	1 500 40 500	-0.35004000
C N	-3.68135500	1.56349500	-0.23866400
N	3.38136100	0.59639100	0.29341200
Ν	4.66669000	0.43617900	0.39186800
Ν	4.85863600	-0.88212900	0.38435100
С	3.68143700	-1.56794600	0.26536900
В	-2.37781600	-1.89802700	-0.02958100
В	2.38260800	1.89486000	0.01935700
С	6.17289700	-1.41912600	0.48887300
Ċ	7,14835300	-0.73130600	1,21239800
Ĉ	8 42207100	-1 25727400	1 30724000
č	8 73/3/200	-2 47762700	0.69366500
2	7 75197500	2 16141500	0.03500500
C	7.75167500	-3.10141500	-0.02031000
C	6.4/339100	-2.62198100	-0.13327600
C	-6.1/6/9300	1.40856800	-0.41193600
С	-6.39577100	2.64409500	-1.00283900
С	-7.67930100	3.18143900	-1.03754300
С	-8.74552400	2.46324200	-0.49041200
С	-8.51292200	1.21034800	0.09245800
С	-7.23611900	0.68591200	0.13991500
Ο	10.00999100	-2.91059300	0.85119700
0	-10.03213700	2.89235400	-0.47753100
Ĉ	3 05766800	2 52031800	-1 33683200
č	4 20401000	3 33963500	-1 20281800
č	4 82070700	3 87837300	-2 32777700
č	4.02979700	3.67337300	2.5277700
č	4.30301300	3.04123400	-3.01555100
C	3.25320200	2.81910500	-3.75078200
C	2.60551500	2.25466500	-2.64/6/100
С	2.15994500	2.93041000	1.25749300
С	1.57773000	4.18820600	0.97905500
С	1.30495000	5.08951900	2.01053700
С	1.57991300	4.79605200	3.34025600
С	2.10289000	3.53908900	3.62017400
С	2.37771000	2.61034300	2.61503400
С	-2.15015200	-2.94072400	-1.25924400
С	-2.36449000	-2.62905200	-2.61907600
Ĉ	-2 08150700	-3 56224600	-3 61766900
c.	-1 55481400	-4 81563900	-3 32822400
č	-1 28550500	-5 101/0300	-1 99561200
ĉ	1 56614000	4 10509200	0.07059500
C	-1.36614000	-4.19506500	-0.97036300
C	-3.06415300	-2.51207300	1.32690700
C	-2.62092200	-2.23/38600	2.63900400
С	-3.28366300	-2.78396800	3.74207900
С	-4.40044500	-3.59769100	3.60516800
С	-4.85579200	-3.84583300	2.31581900
С	-4.21505600	-3.32463700	1.19054100
Н	-0.55895800	2.42567900	-0.15528300
Н	0.56310500	-2.42861000	0.14479000
н	-3.64815600	2.63307100	-0.14939100
н	3.63947900	-2.64082000	0.25888500
H	6.89871100	0.20814600	1.68515400
•••			

н	9.19509900	-0.74203800	1.86171600
Н	7.97181800	-4.09691900	-0.51910700
Н	5.72286800	-3.13464600	-0.72047200
Н	-5.57420900	3.18632400	-1.45265000
Н	-7.83555200	4.14383000	-1.50201000
Н	-9.35025800	0.67038300	0.51412900
Н	-7.04497500	-0.27491000	0.59737700
Н	5.70980800	4.49987400	-2.18984900
Н	2.87981500	2.59804200	-4.74618800
Н	0.85947100	6.04876800	1.76284600
Н	2.28637600	3.26164100	4.65404400
н	-2.26279200	-3.29174400	-4.65375700
Н	-0.83914600	-6.05827800	-1.74036500
н	-2.91665800	-2.55618800	4.73832300
н	-5.73769000	-4.46443300	2.17642500
С	-4.79819900	-3.70792700	-0.15283200
н	-4.20991700	-4.50057500	-0.62213500
н	-5.82123600	-4.07155600	-0.02634100
н	-4.81640600	-2.87570300	-0.85341000
С	-1.42050400	-1.36854000	2.94280800
н	-0.49888100	-1.80426900	2.55105600
н	-1 50254000	-0.37622700	2 49764800
н	-1 30615300	-1 24828200	4 02251700
C	-1 22540100	-4 63906800	0 43702800
н	-0.80996500	-3 83221300	1 04088300
н	-2 11447200	-4 98603100	0.96939600
н	-0 50284600	-5 / 5895100	0.00000000
\hat{c}	-2.87518000	-1.27025600	-3 07081800
Ľ	2 01/52700	1 11645100	2 77506000
	2 27917500	-1.11045100	2.77500900
Ľ	2 921 40400	1 10077700	1 15969200
\hat{c}	1 41140000	1 27672200	2 05112400
Ц	1.41149000	0.38461700	-2.55115400
Ľ	0.49627600	1 904/6900	2.50710500
	1.20726200	1.00440000	-2.55605600
	1.29730200	1.20070900	-4.03093000
	4.79901300	3.71095400	0.13670000
	5.82321000	4.06906400	0.00652500
	4.210/2000	4.50554500	0.01021100
	4.81746000	2.8/352400	0.83293400
	1.22839900	4.64192300	-0.42345400
	2.11337600	4.99545900	-0.95825200
	0.811/4600	3.83882300	-1.03123800
	0.50387600	5.45963400	-0.38216400
	2.88090800	1.25511500	3.05961100
н	2.28126200	0.44996300	2.62945000
н	3.92013800	1.08820300	2.76528700
н	2.82482100	1.16938700	4.14682900
C	-1.28980100	-5.82338200	-4.41683000
н	-2.18612500	-6.41614900	-4.6313/200
H	-0.992/5200	-5.33141600	-5.34688900
Н	-0.49819300	-6.51872100	-4.12594300
С	-5.08078900	-4.20355500	4.80560000
Н	-4.66205900	-5.18907600	5.03824300
Н	-4.95301600	-3.57525400	5.69079700
Η	-6.15102000	-4.33660900	4.62712100
С	5.02936100	4.26478500	-4.81500200
Н	4.86307900	3.66585300	-5.71397900

Н	4.63146000	5.26732600	-5.00824500
Н	6.10695900	4.36503300	-4.66058300
С	1.32285900	5.79875200	4.43535600
Н	1.03523700	5.30239200	5.36599600
Н	2.21985200	6.39263300	4.64400100
Н	0.52712900	6.49348500	4.15454600
С	10.38097900	-4.14120900	0.23740100
Н	9.78245600	-4.97094100	0.62848600
Н	10.26225900	-4.08842500	-0.85004800
Н	11.42897900	-4.29460200	0.48599900
С	-10.32171500	4.16132900	-1.05555800
Н	-9.77845700	4.96052500	-0.53998300
Н	-10.06456700	4.17539300	-2.12006500
Н	-11.39297900	4.30718900	-0.93401300

half-open-Trz-OMe'

HF zero-point energy = -2853.5317849 Zero-point correction = 1.085255 (Hartree/Particle) Thermal correction to Energy= 1.152293 Thermal correction to Enthalpy= 1.153237 Thermal correction to Gibbs Free Energy= 0.976841 Sum of electronic and zero-point Energies=-2852.446530 Sum of electronic and Thermal Energies=-2852.379492 Sum of electronic and Thermal Enthalpies= -2852.378548 Sum of electronic and Thermal Free Energies=-2852.554944

С	-0.86866800	1.36478600	0.52957400
С	-1.22399100	0.02213800	0.80791600
С	-0.27242100	-0.99334600	0.82438400
С	1.07267800	-0.71866300	0.59627400
С	1.41893400	0.62646800	0.35695000
С	0.48360400	1.65528300	0.34483400
С	2.83049600	0.70141100	0.05547600
С	-2.63525700	-0.27551100	1.05454800
Ν	-3.38588100	0.45329200	1.93377800
Ν	-4.62444400	0.08055900	1.86336300
Ν	-4.69808500	-0.90097900	0.93362500
С	-3.47132200	-1.15911000	0.41980500
Ν	3.38010700	-0.54373900	-0.04165000
Ν	4.64965300	-0.50273700	-0.31385300
Ν	4.94278600	0.79112300	-0.42710600
С	3.84826800	1.58285600	-0.20851800
В	-1.90779700	2.46602700	0.13903000
В	2.32328400	-1.74113600	0.39113500
С	6.26605700	1.20342600	-0.75384500
С	7.08299800	0.37187900	-1.50779900
С	8.37438300	0.77476100	-1.82759700
С	8.84266800	2.02157800	-1.40223600
С	8.00879200	2.85287700	-0.64485100
С	6.73026900	2.44326600	-0.31448200
С	-5.94646300	-1.44509700	0.54126900
С	-6.14946300	-1.81204500	-0.78916900
С	-7.36994700	-2.33102000	-1.18125800
С	-8.40733800	-2.47072500	-0.25334700
С	-8.20467600	-2.08491900	1.07425500
С	-6.96987900	-1.57916800	1.46908400
С	3.10835800	-2.43701500	1.64436900
С	4.13939400	-3.36581200	1.36854100
С	4.84728500	-3.97114000	2.40769400

С	4.57752800	-3.69442000	3.74276400
С	3.58424700	-2.76255000	4.01428600
С	2.86063000	-2.13027300	2.99917200
С	1.83615100	-2.73775700	-0.80911200
Ċ	1.19279100	-3.94597700	-0.45210800
Ċ	0 70837000	-4 81113100	-1 43523600
č	0.82142400	-4 52819400	-2 79064100
č	1 /0001800	-3.31/38100	-2.75004100
č	1.90511000	2 /1096600	2 19440200
č	1.00011000	2.41900000	-2.10440300
č	-1.03121400	3.95254700	0.04061100
C	-1.34606400	4.28558900	1.88969000
C	-1.11995900	5.61486500	2.24149800
С	-1.13545200	6.63702900	1.29565200
С	-1.39651400	6.30136800	-0.03050400
С	-1.66185000	4.98781900	-0.41384600
С	-3.12705900	2.05567100	-0.77001000
С	-2.95082400	1.26663600	-1.92582900
С	-4.05946300	0.86326100	-2.67002000
Ċ	-5.35712600	1,19592500	-2,29318300
Ĉ	-5 52555600	1 97964600	-1 15441400
č	-4 44051100	2 43192600	-0 40824600
ŭ	0.50226100	2.40102000	1 01772600
	0.39220100	2.01010300	0.12141500
	0.76016300	2.07712100	0.13141300
н	-3.30333000	-1.88644100	-0.35288600
н	3.89164800	2.65360300	-0.27485500
н	6.71061500	-0.58828300	-1.83617600
Н	8.99934000	0.11636600	-2.41273000
Н	8.38987100	3.80882900	-0.31130800
Н	6.10214500	3.07649400	0.29809700
Н	-5.36563100	-1.65052500	-1.51646900
Н	-7.54885300	-2.61451700	-2.20993700
Н	-8.99215200	-2.18085900	1.80736100
Н	-6 79958900	-1 27650600	2 49285000
н	5 63423400	-4 67824700	2 16217900
н	3 36843500	-2 50790000	5.04751600
Ц	0.22240000	-2.30730000	-1 12618500
	1 46054900	-0.70190700	4 10020200
	0.00077600	-3.04212000 E 95760100	-4.19030200
	-0.92377600	5.65762100	3.20129200
н	-1.40134300	7.08264800	-0.78421400
н	-3.90446600	0.2/350300	-3.56866100
н	-6.52820500	2.24768700	-0.83708300
С	-4.70234100	3.29379700	0.80263700
Н	-4.28210900	4.29320000	0.66733600
Н	-5.77520400	3.38567500	0.98270300
Н	-4.24357500	2.86314800	1.69411600
С	-1.58382700	0.83776700	-2.41131300
н	-0.84342100	1.63107400	-2.29459000
Н	-1 20923300	-0.02217300	-1 84965900
н	-1 62542100	0.55949600	-3 46676400
Ċ	-1 96881600	4 71348600	-1 86806600
Ц	1 2020/700	4.71340000	-1.00090000
	-1.39804700	3.86567900	-2.25412000
н	-3.02385300	4.46434400	-2.00616/00
Н	-1./3825/00	5.58898700	-2.4801/900
С	-1.31310500	3.23645800	2.97738300
Н	-2.13652300	2.52494300	2.88926900
Н	-0.39120600	2.65120100	2.92425100
Н	-1.36050600	3.70799100	3.96165800
С	1.81642100	-1.12892100	3.43846400
Н	1.94995600	-0.15839200	2.95801800
Н	0.80617300	-1.45996900	3,18841300
н	1.86453500	-0.98287600	4,51995900
Ċ	4 51422900	-3 78627700	-0.03626300
й	5 50885800	-4 23967100	-0 03745600
	5.555555000	1.2000/100	3.007 -0000

Н	3.80421300	-4.51928800	-0.42771400
Н	4.51774500	-2.95138600	-0.73399300
С	0.99650400	-4.38444300	0.98421000
Н	1.90946700	-4.82388000	1.39369300
Н	0.73930700	-3.55606000	1.64323800
Н	0.20134600	-5.13219200	1.04052600
С	2.41512400	-1.10115300	-2.70320700
Н	1.92744100	-0.25831700	-2.20906800
Н	3.49242400	-0.99952600	-2.55078700
Н	2.22322100	-1.01409300	-3.77469400
0	10.08029700	2.50754900	-1.66847100
0	-9.57285400	-2.98101700	-0.73695600
С	-6.54641100	0.74507600	-3.09982300
Н	-7.01500100	1.59115300	-3.61291000
Н	-6.25299300	0.01471200	-3.85780000
Н	-7.30304100	0.28687900	-2.45805000
С	-0.90792100	8.06965500	1.70180500
Н	-0.49597500	8.65385900	0.87543000
Н	-1.84948500	8.54213900	2.00261600
Н	-0.22272300	8.13539000	2.55059400
С	0.33631800	-5.49671700	-3.83802200
Н	0.00874600	-4.97217400	-4.73948100
Н	1.13279300	-6.18950000	-4.13196300
Н	-0.49792400	-6.09630700	-3.46477500
С	5.32406200	-4.38990500	4.85168900
Н	5.33342700	-3.78383800	5.76106500
Н	4.85503900	-5.34876200	5.09909100
Н	6.35801100	-4.59644200	4.56280800
С	-10.66111600	-3.12771900	0.16713400
Н	-10.95580100	-2.16073600	0.58950900
Н	-11.48234800	-3.53909300	-0.41665300
Н	-10.40695000	-3.81438800	0.98204800
С	10.97380700	1.69111800	-2.42041200
Н	11.16759800	0.74464800	-1.90490000
Н	10.57212400	1.48610800	-3.41834600
Н	11.89724000	2.26001900	-2.50534500

open-Trz-OMe'

HF zero-point energy = -2853.5292113 Zero-point correction = 1.082495 (Hartree/Particle) Thermal correction to Energy= 1.150998 Thermal correction to Enthalpy= 1.151942 Thermal correction to Gibbs Free Energy= 0.970138 Sum of electronic and zero-point Energies=-2852.446716 Sum of electronic and Thermal Energies=-2852.378214 Sum of electronic and Thermal Enthalpies= -2852.377270 Sum of electronic and Thermal Free Energies=-2852.559073

С	-0.85034200	1.13652600	0.01494800
С	-1.31526200	-0.12054800	0.44933800
С	-0.47859500	-1.23119400	0.41033800
С	0.85016300	-1.13716900	-0.01612300
С	1.31502900	0.11987100	-0.45067200
С	0.47836700	1.23052000	-0.41165100
С	2.68987900	0.22301800	-0.94642100
С	-2.69007800	-0.22363600	0.94523900
Ν	-3.16381900	0.60153500	1.92599000
Ν	-4.43492400	0.40582400	2.08448600
Ν	-4.80777400	-0.55339100	1.20626200
С	-3.73981800	-0.97885700	0.48847100

Ν	3.16400500	-0.60255200	-1.92665300
Ν	4.43509400	-0.40662700	-2.08500600
Ν	4.80755900	0.55309100	-1.20716300
С	3.73935600	0.97871900	-0.48983900
в	-1.79035500	2.37259800	-0.20711800
R	1 79034800	-2 37293900	0 20682400
C	6 16791600	0.02316000	-1 05970800
С С	7.01620900	0.01597200	2 16907000
	2.01020000	1.05050100	-2.10007900
	8.34645700	1.25853100	-2.01336300
C	8.84268000	1.62463500	-0.75612700
С	7.99042400	1.62/36500	0.34945900
С	6.65532300	1.26519100	0.19317900
С	-6.16824000	-0.92312000	1.05894500
С	-6.65601100	-1.26442000	-0.19399500
С	-7.99123200	-1.62620100	-0.35015200
С	-8.84323700	-1.62381100	0.75562700
С	-8.34663800	-1.25846400	2.01293500
С	-7.01627400	-0.91618900	2.16751600
C	3,20926000	-2.13743000	0.84484000
c	4 35806100	-2 69938900	0 24226900
c	5 62196000	-2 /0735900	0.74835400
С С	5.02130000	1 60725000	1 97457100
	3.79500500	-1.60725900	1.07437100
	4.00030300	-1.09007200	2.48905500
0	3.37937900	-1.32924100	1.98/2/900
C	1.24483300	-3.80295800	-0.11456800
С	1.33833100	-4.84513500	0.83514600
С	0.83573700	-6.10859700	0.53366500
С	0.27243100	-6.39420300	-0.70818200
С	0.19465200	-5.36832300	-1.64602200
С	0.65131000	-4.08148500	-1.36652600
С	-1.24435300	3.80227500	0.11498800
С	-0.65023100	4.07985000	1.36689500
С	-0.19304000	5.36636400	1.64697800
С	-0.27085700	6.39284700	0.70979300
C	-0.83475300	6,10818600	-0.53199200
c	-1 33787500	4 84506100	-0 83404300
c	-3 20950500	2 13774900	-0.84482200
c	-3 38012900	1 33007400	-1 98755100
С С	4 65020700	1.001/0500	2 49007100
	-4.03929700	1.09140500	1 9740500
	-5.79565100	1.00000100	-1.6/403300
0	-5.62211700	2.40816400	-0.74753600
C	-4.35800500	2.69967000	-0.24165300
н	-0.85084500	-2.18910/00	0.75725000
Н	0.85064800	2.18844900	-0.75848700
Н	-3.81629000	-1.72352100	-0.28201100
Н	3.81550700	1.72378100	0.28028900
Н	6.62232200	0.63288000	-3.13419100
Н	9.02202200	1.25981800	-2.85867200
Н	8.35380000	1.88516900	1.33325300
н	6.00700500	1.20851500	1.05675100
н	-6.00786900	-1.20746700	-1.05768000
н	-8 35489500	-1 88342700	-1 33399200
ц	-9 02200000	-1 26001200	2 85830800
	-6 62210200	-0 63376800	2.00000000
	-0.02210300 6 40265200	-0.00070000	0.04001500
н	0.49000000	-2.01/01300	0.24901000
н	4.70906200	-0.48434800	3.38366900
н	0.89196100	-0.89152800	1.28353100

Н	-0.23554900	-5.57392800	-2.62125600
Н	0.23762200	5.57123600	2.62216400
Н	-0.89100500	6.89158700	-1.28136300
Н	-4.77038500	0.48606900	-3.38390100
Н	-6.49358100	2.81856600	-0.24775700
С	-4.25302400	3.59249700	0.97062200
н	-3.75468500	4.53207000	0.72027600
н	-5.24520100	3.81638900	1.36711100
н	-3.67176700	3.11319200	1.75960400
С	-2 20877700	0 70862900	-2 71434000
Ĥ	-1.36143700	1.39307700	-2.78506900
н	-1 84349100	-0 18185500	-2 19535500
н	-2 49835100	0 41778300	-3 72655200
C	-1 96560400	4 62905400	-2 19275200
н	-1 59772500	3 71923200	-2 67183500
н	-3 0/97/000	4 52077300	-2 10966700
ц	-1 75165100	5 47364100	-2.85131300
\hat{c}	-0.52603500	3 02/03800	2.03131300
Ц	1 42992100	2 41519000	2.44230200
п	-1.42002100	2.41516000	2.02004400
	0.29422100	2.33000400	2.21992300
	-0.32598200	3.49001000	3.40982000
	2.20771600	-0.70772800	2.71351900
н	1.84263200	0.18268800	2.1942/300
н	1.36035000	-1.39215900	2.78400500
Н	2.49688800	-0.416/2800	3.72580100
C	4.25360300	-3.59288100	-0.96956100
н	5.24592500	-3.81664400	-1.365/5900
н	3.75554300	-4.53249000	-0./18/9600
Н	3.67232300	-3.11419700	-1.75889900
С	1.96550400	-4.62808000	2.19393900
Н	3.04964000	-4.51956200	2.11116300
Н	1.59721100	-3.71804400	2.67229400
н	1.75153800	-5.47229300	2.85297500
С	0.52815600	-3.02631500	-2.44265200
Н	-0.29302500	-2.33900700	-2.22071000
Н	1.43005200	-2.41748800	-2.52910700
Н	0.32737200	-3.49283800	-3.40985800
С	7.17279600	-1.33076600	2.41610800
Н	7.83942500	-0.98244700	1.62307600
Н	7.14153000	-0.56801600	3.19816800
Н	7.61331100	-2.23555000	2.84718200
С	-7.17364600	1.33265900	-2.41535400
Н	-7.14281400	0.56988300	-3.19740600
Н	-7.84028300	0.98461900	-1.62221000
Н	-7.61386000	2.23761100	-2.84638600
С	0.21177100	7.78125500	1.03789900
Н	0.63199300	8.27161500	0.15628500
Н	-0.61496600	8.40389600	1.39711600
Н	0.97336800	7.75985600	1.82086000
С	-0.20962700	-7.78297900	-1.03557300
Н	0.61780000	-8.40613100	-1.39230100
Н	-0.63168700	-8.27222700	-0.15421200
Н	-0.96963200	-7.76248500	-1.82009800
0	10.16234000	1.95295800	-0.71001600
0	-10.16299000	-1.95178100	0.70965200
Ċ	10.71018700	2.33045700	0.54693700
С	-10.71125800	-2.32833300	-0.54740000

H 10	.62989700	1.51435200	1.27356300
H 11.	.75890500	2.55467800	0.36176900
H 10	.20692800	3.21840900	0.94524100
H -11	.76001400	-2.55229200	-0.36212700
H -10	.63084000	-1.51182000	-1.27355400
H -10	.20841000	-3.21622600	-0.94635500

3.1.4. Trz-CF₃'

closed-Trz-CF₃'

HF zero-point energy = -3298.7576642 Zero-point correction = 1.031737 (Hartree/Particle) Thermal correction to Energy= 1.099968 Thermal correction to Enthalpy= 1.100912 Thermal correction to Gibbs Free Energy= 0.915797 Sum of electronic and zero-point Energies=-3297.725928 Sum of electronic and Thermal Energies=-3297.657697 Sum of electronic and Thermal Enthalpies= -3297.657652 Sum of electronic and Thermal Free Energies=-3297.841867

С	-0.94126900	-1.07321100	0.05499100
С	-1.32042900	0.28665400	-0.02034500
С	-0.41854100	1.34766500	-0.05253400
С	0.94126500	1.07321900	-0.05486200
С	1.32043300	-0.28664200	0.02046700
С	0.41854300	-1.34764900	0.05264700
С	2.76083000	-0.35998800	0.09638500
С	-2.76081300	0.35999500	-0.09631600
Ν	-3.32422900	-0.88254900	-0.19920000
Ν	-4.61651900	-0.83293100	-0.25507200
Ν	-4.92349800	0.46558200	-0.20931600
С	-3.80402100	1.24898600	-0.11208500
Ν	3.32430000	0.88253300	0.19932700
Ν	4.61659300	0.83287400	0.25513800
Ν	4.92352900	-0.46564200	0.20925800
С	3.80401900	-1.24900500	0.11206400
В	-2.20466600	-2.09810600	0.02198300
В	2.20467900	2.09806800	-0.02185100
С	6.28244400	-0.87929200	0.25955900
С	7.23123100	-0.05230100	0.85597000
С	8.55479600	-0.46394700	0.89741500
С	8.92370800	-1.69197700	0.35274600
С	7.96779700	-2.51319200	-0.23827800
С	6.64329100	-2.10386200	-0.29574600
С	-6.28242300	0.87918400	-0.25972300
С	-6.64333400	2.10380300	0.29543300
С	-7.96785100	2.51308200	0.23786800
С	-8.92371200	1.69177000	-0.35310300
С	-8.55473700	0.46369300	-0.89762200
С	-7.23116000	0.05209600	-0.85608000
С	2.78564800	2.79523100	-1.38465000
С	3.87252100	3.69497800	-1.26945600
С	4.42689200	4.28938000	-2.40340500
С	3.94262900	4.03504600	-3.68127000
С	2.88611500	3.14187600	-3.79740900
С	2.31190200	2.51871400	-2.68520700

С	1.93854900	3.09381900	1.23787600
С	1.24298900	4.29968800	0.99538500
С	0.93478900	5.16540600	2.04744600
С	1.28367600	4.88459400	3.36224500
С	1.91979600	3.67308500	3.60803600
С	2.23288000	2.78013400	2.58239200
С	-1.93849100	-3.09385000	-1.23773200
С	-2.23277000	-2.78012100	-2.58224700
Ċ	-1.91961100	-3.67302500	-3.60791100
c	-1 28346600	-4 88452400	-3 36213600
č	-0.93463600	-5 16538100	-2 04733100
c	-1 2/201800	-1 20071500	-0.99525200
0	2 79564700	2 70510700	1 20402000
0	-2.76504700	-2.79319700	0.00505700
0	-2.31193900	-2.51656500	2.00000700
	-2.88631100	-3.14152900	3./9/61600
C	-3.94292400	-4.03456800	3.68153800
С	-4.42710600	-4.28906300	2.40366100
С	-3.87259500	-3.69489100	1.26967600
Н	-0.77087800	2.37195800	-0.08865100
Н	0.77087700	-2.37194400	0.08874000
Н	-3.84903900	2.32112400	-0.07868800
Н	3.84900700	-2.32114100	0.07860700
Н	6.92884200	0.89745300	1.27263600
Н	9.30202400	0.17207700	1.35211000
Н	8.26025100	-3.45908600	-0.67337400
Н	5.90560100	-2.72252100	-0.78780400
Н	-5.90568500	2.72254200	0.78745200
н	-8.26035300	3.45901400	0.67284800
н	-9.30192500	-0.17240700	-1.35227600
н	-6.92872500	-0.89769600	-1.27262900
н	5 26443200	4 96991700	-2 28074000
н	2 49824900	2 91102900	-4 78484300
н	0 40099000	6.08553300	1 82800000
н	2 16495800	3 40290500	4 63093700
н	-2 16/73500	-3 /0281500	-4 63081300
н	-2.104735000	-6.08550500	-1.82789300
	2 40946200	2 01 062000	4 79504100
	-2.49040300 E 06469000	-2.91002000	4.76504100
	-5.20406200	-4.90950500	2.20102400
	-4.4/400100	-4.09002700	-0.06011500
	-3.85542100	-4.84/14100	-0.55835300
н	-5.46904100	-4.52329500	0.09417800
Н	-4.56474300	-3.26005800	-0.74946200
C	-1.16/54900	-1.57040000	2.96663600
н	-0.23329200	-1.92/94600	2.52826700
н	-1.33897000	-0.57585700	2.55287900
Н	-1.01857000	-1.46907900	4.04392300
С	-0.80065500	-4.73478500	0.38711500
Н	-0.44964700	-3.90216500	0.99635800
Н	-1.62332800	-5.18992300	0.94467200
Н	0.00372800	-5.47084300	0.30678700
С	-2.86234400	-1.46695900	-2.99023500
Н	-3.90325300	-1.39321500	-2.66456600
Н	-2.32007900	-0.61919500	-2.56526100
Н	-2.84642200	-1.36168200	-4.07688800
С	1.16764300	1.57038300	-2.96652100
Н	1.33916400	0.57587500	-2.55272900
Н	0.23331800	1.92782600	-2.52820200

Н	1.01872600	1.46902000	-4.04381200
С	4.47471200	4.09654200	0.06034200
Н	5.46910400	4.52313100	-0.09396600
Н	3.85554500	4.84707600	0.55866800
Н	4.56473300	3.25990700	0.74961300
С	0.80062800	4.73471700	-0.38696600
Н	1.62325200	5.18989200	-0.94456700
Н	0.44962900	3.90207800	-0.99618300
Н	-0.00378500	5.47073900	-0.30659500
С	2.86244600	1.46697900	2.99040900
Н	2.32013200	0.61920000	2.56552800
Н	3.90333000	1.39319600	2.66466700
Н	2.84660400	1.36176600	4.07707000
С	10.35136100	-2.16233400	0.45684600
С	-10.35137800	2.16206400	-0.45730800
F	11.22357400	-1.13322800	0.47971100
F	10.55335900	-2.87504600	1.59116800
F	10.69656600	-2.96257600	-0.57439500
F	-11.22355200	1.13292300	-0.48008100
F	-10.55336400	2.87463400	-1.59172100
F	-10.69664800	2.96241500	0.57382700
С	-4.53299000	-4.71455800	4.88979000
Н	-4.11201900	-5.71759900	5.02043100
Н	-4.32605400	-4.14810100	5.80098500
Н	-5.61604900	-4.82594700	4.79047900
С	-0.98578500	-5.85221200	-4.47806400
Н	-1.85475000	-6.48428000	-4.69226600
Н	-0.72958100	-5.32538400	-5.40114000
Н	-0.15553000	-6.51262900	-4.21566000
С	0.98607700	5.85233600	4.47814700
Н	0.73003100	5.32555200	5.40129100
Н	1.85502800	6.48447700	4.69219200
Н	0.15574400	6.51268300	4.21580900
С	4.53242600	4.71534300	-4.88947900
Н	4.32777300	4.14763900	-5.80041900
Н	4.10924400	5.71728100	-5.02146600
Н	5.61510700	4.82932600	-4.78908700

half-open-Trz-CF3'

HF zero-point energy = -3298.7596871 Zero-point correction = 1.030145 (Hartree/Particle) Thermal correction to Energy= 1.099227 Thermal correction to Enthalpy= 1.100171 Thermal correction to Gibbs Free Energy= 0.916752 Sum of electronic and zero-point Energies=-3297.729542 Sum of electronic and Thermal Energies=-3297.660460 Sum of electronic and Thermal Enthalpies= -3297.659516 Sum of electronic and Thermal Free Energies=-3297.842935

С	-0.76533900	1.40190300	0.59234300
С	-1.21582600	0.09798700	0.91580900
С	-0.34653900	-0.98742800	0.94923400
С	1.01154300	-0.82611100	0.68775700
С	1.45186600	0.47802200	0.38855400
С	0.59960800	1.57689600	0.36351700
С	2.85766000	0.43455900	0.05894700

С	-2.64342800	-0.08874000	1.18699900
Ν	-3.31700100	0.66421900	2.11234400
Ν	-4.58211700	0.42223600	2.03152600
Ν	-4.75951600	-0.49493400	1.04556300
С	-3.56102600	-0.84616800	0.51151900
Ν	3.31060600	-0.85417900	-0.01032500
Ν	4.57261000	-0.91788300	-0.29278100
N	4,96694800	0.34879400	-0.43599100
C	3 93675800	1 22854700	-0 22927600
R	-1 72293200	2 58574800	0.22315300
B	2 17233/00	-1 95222800	0.50552700
C	6 21052200	0.64205600	0.30332700
č	0.31955200	0.04295000	-0.70070500
Č	7.09479400	-0.31559400	-1.40948000
Š	8.41270400	-0.01882600	-1./209/600
Š	8.94802600	1.22493900	-1.39189100
C	8.16515200	2.1/698200	-0.74629900
С	6.84858700	1.88410000	-0.41878400
С	-6.05321700	-0.86057000	0.61448000
С	-6.22651900	-1.99347400	-0.17687800
С	-7.49119400	-2.31593900	-0.64918200
С	-8.57919400	-1.51175500	-0.32632700
С	-8.40274400	-0.39000200	0.48275600
С	-7.14215100	-0.05449500	0.94683900
Ċ	2.94711600	-2.63586000	1.77021000
Ĉ	3 90206000	-3 64654600	1 51143600
č	4 60383400	-4 24436000	2 55910900
č	1.00000100	-3 88080000	3 88501100
č	2 47060400	2 97157400	4 12770900
č	2 76422900	2.0/10/400	2 11264700
č	2.70432000	2.24313600	0,60002000
Š	1.57341200	-2.90003700	-0.02093000
Š	0.83122100	-4.08591400	-0.1/214900
C	0.2291/500	-4.95120800	-1.08//3400
C	0.32234900	-4.75767200	-2.46060900
С	1.01110700	-3.63383800	-2.90016900
С	1.61498100	-2.74047600	-2.01301200
С	-1.30502400	4.04382200	0.60447000
С	-0.92976800	4.35711700	1.93101700
С	-0.58347300	5.66561000	2.26215600
С	-0.56657600	6.68332300	1.31155000
С	-0.91969600	6.36590600	0.00199000
С	-1.30508300	5.07655300	-0.35911100
С	-3.01898800	2.26678600	-0.61070700
Ċ	-2.97568300	1.44209300	-1.75453600
Ĉ	-4.15613500	1.08363400	-2.40288900
č	-5 40162300	1 50415400	-1 94340700
č	-5 43601700	2 34865000	-0.83725000
č	-4 27501500	2 7/776900	-0 17891800
ŭ	0 74047000	1 06015100	1 10107200
н Ц	0.74047000	2 56516200	0.11069900
	0.97063400	2.30310200	0.11200000
н	-3.46249200	-1.49/91200	-0.33565800
н	4.058/1100	2.29165500	-0.31540800
Н	6.66554200	-1.27572400	-1.65643100
Н	9.02714600	-0.75659900	-2.21901300
Н	8.58729700	3.13613400	-0.47964600
Н	6.25002900	2.60876800	0.11568700
Н	-5.38314600	-2.62397300	-0.42159900
Н	-7.62772200	-3.18867900	-1.27283500
Н	-9.25055000	0.23619200	0.72670400
Н	-6.98284800	0.82618700	1.55001500
н	5,33195700	-5.01631400	2,32838600
H	3.31530300	-2.55218400	5.16227500
н	-0.33258800	-5.80100200	-0.71113300
н	1 06765300	-3 43276500	-3 96583800
••		5.152,0000	2.2000000

Н	-0.32019000	5.89621500	3.28973900
Н	-0.90333600	7.14364500	-0.75505000
Н	-4.10220200	0.45672300	-3.28763500
Н	-6.39413800	2.70433300	-0.47265600
С	-4.39833000	3.65589900	1.02016500
Ĥ	-3 89446800	4 60878600	0 84481200
н	-5 44842400	3 85296800	1 24562500
Ц	-3.94056500	3 20177600	1 0013/200
\hat{c}	1 67271500	0.01066200	2 21600900
ň	-1.07271500	1.67760400	-2.31090000
П	-0.88718200	1.67762400	-2.29114300
н	-1.30075400	0.06624400	-1./4362300
Н	-1.8062/800	0.59968100	-3.35251/00
С	-1./1035300	4.82386900	-1./9385300
Н	-1.22739000	3.93462900	-2.20478500
Н	-2.78720000	4.65569300	-1.87214700
Н	-1.44814300	5.67804200	-2.42197900
С	-0.93248800	3.31465300	3.02631200
Н	-1.81065300	2.66772800	2.97777200
Н	-0.06014100	2.66077000	2.94528000
Н	-0.90697100	3.79468400	4.00714100
С	1.79653400	-1.16082900	3.53032100
Ĥ	1 98094900	-0 22041300	3 00826700
н	0 76212400	-1 43636100	3 31337500
н	1 87651300	-0.97476200	4 60357500
C	1 19537700	-4 16447900	0 11002300
й	5 15116400	-4.60442700	0.11352500
	2 41725700	4.09442700	0.11104000
	3.41733700	-4.03720300	-0.21094000
П	4.23860400	-3.30800100	-0.62118400
	0.00322100	-4.42423800	1.29319200
н	1.54266700	-4.91434000	1.69681400
н	0.49062400	-3.54212500	1.91190200
Н	-0.19/08900	-5.09865400	1.42104800
С	2.27386200	-1.52251800	-2.62142600
н	1.89158200	-0.60079300	-2.17688900
Н	3.35839900	-1.53233700	-2.48678300
Н	2.07403700	-1.48158700	-3.69404600
С	10.36169000	1.55716900	-1.79419700
С	-9.96092900	-1.87079900	-0.79817000
F	11.16389400	0.47258200	-1.75974000
F	10.41160000	2.04263200	-3.05794100
F	10.91135900	2.49321900	-0.99224200
F	-10.68864700	-0.77318800	-1.10707300
F	-10.65662100	-2.54050000	0.15339800
F	-9.94043200	-2.65936500	-1.89457100
С	5.13676800	-4.56731300	5.00594700
Ĥ	5.27032900	-3.89750200	5.85910700
Н	4.58256700	-5.44391700	5.35925200
н	6 12095500	-4 91176300	4 67845000
c	-0 29247800	-5 73037700	-3 43324100
й	-0 58540000	-5 23070800	-4 36022300
н	0.41695700	-6 52257800	-3 69687700
Ц	-1 17572600	-6 21151/00	-3 00530000
C	-6 6750/500	1 0421///00	-2 5998///00
ц	-6 /80/2100	0 68371400	-3 61/71/00
Ц	-7 12625000	0.00071400	-2 02162200
п	7 41100500	1 9/960000	2.03103200
	-7.4112200	1.04000900	-2.04000400
	-0.21131300	0.0904/000	1.09043400
П	0.22986000	0.03521/00	0.00011200
П	-1.10413/00	0.04/30400	2.01010400
н	0.49438800	8.11221100	2.53043500

open-Trz-CF₃'

HF zero-point energy = -3298.7602936 Zero-point correction = 1.027628 (Hartree/Particle) Thermal correction to Energy= 1.098013 Thermal correction to Enthalpy= 1.098957 Thermal correction to Gibbs Free Energy= 0.911633 Sum of electronic and zero-point Energies=-3297.732666 Sum of electronic and Thermal Energies=-3297.662281 Sum of electronic and Thermal Enthalpies= -3297.661337 Sum of electronic and Thermal Free Energies=-3297.848660				
	0.82019100 1.31593000 0.50984100 -0.82017700 -1.31590100 -0.50979900 2.69669900 2.69669900 2.69671200 3.14768900 4.42632500 4.83571300 3.77222900 -3.14780900 -4.42642700 -4.83570000 -3.77213200 1.71985600 -1.71987600 -6.20715900 -7.16023600 -8.59116100 -8.89326800 -7.93938900 -6.59416500 6.20721100 6.59435800 7.93960400 8.9336900 8.50112400 7.16016800	-1.16077700 0.07135600 1.20464100 1.16104100 -0.07107700 -1.20435900 -0.13008300 0.13034500 -0.3008300 0.34629200 0.80861200 0.69089800 0.56280900 -0.34619900 -0.34619900 -0.34619900 -0.34619900 -0.30133100 0.06120900 -1.07118200 -1.98138500 -1.75400900 0.61029800 1.75386700 1.98106200 0.00159200 -0.30153100	gless=-3297.661337 alpiess=-3297.661337 Energiess=-3297.848660 -0.01609400 0.45361500 0.44693500 0.01572800 -0.45401000 -0.44735000 -0.44735000 -0.4431300 0.94398100 1.94346300 2.06800400 1.14707300 0.43942700 -1.94367200 -2.06816200 -1.14732000 -0.25707700 0.25702700 -0.93975600 -1.39327400 -1.14574300 -0.43283900 0.01006100 -0.24575900 0.39351000 0.24548900 -0.01036900 0.43252200 1.14545000	
000000000000000000000000000000000000000	7.16016800 -3.15862800 -4.27591100 -5.56249200 -5.79029700 -4.68183200 -3.38298300 -1.11850500 -1.18687100 -0.63405400 -0.04371300 0.00771500 -0.50035600 1.11844600 0.50021600 -0.00791400 0.63394700 1.18684800 3.15862700 3.38298600 4.68185300	-0.30153100 2.21960800 2.81763000 2.51431500 1.65602300 1.12010400 1.37782800 3.83830400 4.86816400 6.11645900 6.40036000 5.38753900 4.11465900 -3.83802700 -4.11404200 -5.38681200 -6.39990000 -6.11635700 -4.86813200 -2.21961600 -1.37801800 -1.12035200	1.39301700 0.85665000 0.23293900 0.67486600 1.74579400 2.39828900 1.96687400 -0.03492700 0.93042100 0.65589300 -0.57394800 -1.52792000 -1.27553100 0.03523000 1.27590600 1.52859300 0.57486700 -0.65498400 -0.92980600 -0.85672300 -1.96709400 -2.39849900	

С	5.79031000	-1.65615100	-1.74587900
С	5 56248000	-2 51430100	-0 67484500
č	4.07500700	2.01100100	0.00101000
C	4.27588700	-2.81/54200	-0.23291400
Н	0.90878400	2.14211200	0.81868300
н	-0 90874900	-2 14182100	-0 81911400
	0.0007 +000	2.14102100	0.01511400
н	3.86988200	1.47588100	-0.39579900
Н	-3.86966200	-1.47589600	0.39535100
н	-6 83634800	1 18621500	-1 91939500
Ц	0.04600000	0.76000500	1 40070000
п	-9.24020000	0.76909500	-1.403/3200
н	-8.24354600	-2.86282800	0.55751100
н	-5.85331600	-2.46674400	0.08885600
н	5 85359300	2 46670000	-0.08910800
	0.00000000	2.40070000	-0.00910000
н	8.24386900	2.86244900	-0.55/85000
Н	9.24615100	-0.76958200	1.48344000
н	6.83618400	-1.18637000	1.91915500
Ц	-6 /1050200	2 96015500	0 16583100
	-0.41030200	2.90013300	0.10303100
н	-4.83332300	0.48326600	3.26463600
Н	-0.67206600	6.88937200	1.41705800
н	0 45587800	5 59364300	-2 49489200
Ц	0.45615000	5 50262200	2 40550000
	-0.45015900	-0.09200200	2.49559000
н	0.67197000	-6.88947300	-1.41593700
Н	4.83338500	-0.48364200	-3.26493300
н	6.41046900	-2.96003600	-0.16568100
Ĉ	4 11940200	2 75114600	0.04240900
	4.11042300	-3.75114000	0.94249000
н	3.56307700	-4.64807700	0.66081900
Н	5.09571100	-4.05167800	1.32575500
н	3 56908500	-3 26833400	1 75325100
Ĉ	2 24240600	0 72220700	2 72244900
Ň	2.24343000	-0.73220700	-2.72244000
н	1.39660500	-1.41043000	-2.84332000
н	1.86250200	0.14754000	-2.19607400
Н	2.57305000	-0.41779000	-3.71500100
С	1 84145400	-4 65176600	-2 27549200
ŭ	1 50220000	2 72740000	0 74000700
	1.00020000	-3.72740900	-2.74090700
н	2.92646300	-4.5/162600	-2.1/411200
Н	1.61755000	-5.48222100	-2.94829200
С	0.40745700	-3.07402600	2,37009800
й	1 32906000	-2 /9807500	2 17252000
ü	0.20072400	2.40007000	2.47232300
п	-0.38873400	-2.35480300	2.15840400
н	0.18/09300	-3.5501/500	3.32811800
С	-2.24346700	0.73189200	2.72208900
н	-1.86266600	-0.14790400	2.19565500
н	-1 396/7100	1 / 1000000	2 8/283000
- 11	-1.030+7100	0.41750000	2.04200000
п	-2.5/292400	0.41750200	3.71468200
С	-4.11854800	3./5142200	-0.94233200
Н	-5.09587100	4.05206600	-1.32541000
н	-3 56311800	4 64828800	-0 66061000
Ц.	2 56024600	2 26970600	1 75202700
	-3.50954000	3.20070000	-1.75525700
С	-1.84136900	4.65141200	2.2/609200
Н	-2.92641100	4.57158000	2.17479200
н	-1.50338700	3.72678700	2.74918400
н	-1 61719800	5 48155300	2 94919300
~	0.40750000	0.40100000	2.04010000
	-0.40759500	3.07493700	-2.309999000
н	0.38872800	2.35576700	-2.15858/00
Н	-1.32913200	2.49889200	-2.47247700
Н	-0.18740300	3.55135300	-3.32792400
C	-10 35708600	-1 32240000	-0 19702500
č	10.25700100	1 2017/000	0.10670700
Ě	10.33/22100	1.321/4900	0.190/0/00
F	-11.02611300	-0.1/896900	0.07562400
F	-10.95238200	-1.86867700	-1.28540600
F	-10.57321200	-2.16860300	0.83306700
F	11.02609900	0.17825100	-0.07596200
E	10 05250500	1 86705200	1 28508100
r F	10.90200000	1.0079000	0.00000100
г	10.5/344500	2.10/94100	-0.83339100

С	-7.19017900	1.29391400	2.16374800
Н	-7.53648400	0.40875000	1.62055900
Н	-7.23892300	1.06850400	3.23159400
Н	-7.88995300	2.10399500	1.94637900
С	7.19019500	-1.29403800	-2.16380100
Н	7.23900100	-1.06879300	-3.23168100
Н	7.53642200	-0.40876200	-1.62073700
Н	7.89000500	-2.10404100	-1.94625800
С	-0.49353700	-7.77457600	0.87420900
Н	-0.91688300	-8.23667500	-0.02095100
Н	0.30492500	-8.43142100	1.23626900
Н	-1.26569000	-7.73770500	1.64610300
С	0.49334500	7.77515200	-0.87276100
Н	-0.30622400	8.43380300	-1.22903100
Н	0.92180400	8.23462100	0.02134200
Н	1.26151200	7.73927500	-1.64864800

3.1.5. Transitional State Optimization

Open/closed conformers and transitional state of *ortho*-dimesitylboryl-(1-methyl-1,2,3-triazol-4-yl)-phe-nylene optimized at B3LYP-D2/def2-TZVP, solvent: PCM; THF

Open-Conformer (TS°)

HF zero-point energy = -1236.6136061 Zero-point correction= 0.506507 (Hartree/Particle) Thermal correction to Energy= 0.537162 Thermal correction to Enthalpy= 0.538106 Thermal correction to Gibbs Free Energy= 0.443885 Sum of electronic and zero-point Energies= -1236.107099 Sum of electronic and thermal Energies= -1236.076444 Sum of electronic and thermal Enthalpies= -1236.075500 Sum of electronic and thermal Free Energies=-1236.169721

С	0.35935300	1.78937000	0.43182200
С	-0.83702300	2.39831700	-0.00193600
С	-1.10603200	3.73030200	0.30508900
С	-0.19377300	4.48216600	1.03983900
С	1.00785400	3.90931800	1.44570900
С	1.27993400	2.58316400	1.12841800
С	-1.78338600	1.61081500	-0.80071800
Ν	-1.41734100	1.00479300	-1.96410200
Ν	-2.40118600	0.26883900	-2.39338400
Ν	-3.40819000	0.39118700	-1.52049700
С	-3.07284100	1.22665200	-0.51874800
В	0.64155800	0.25167200	0.31128200
С	-4.59800800	-0.43066600	-1.63956300
С	2.10961300	-0.23030100	0.05538700
С	2.85464500	0.27792300	-1.03082700
С	4.14602600	-0.18761400	-1.26744400
С	4.74975700	-1.12939800	-0.43827000
С	4.01928000	-1.61209700	0.64434000
С	2.71270400	-1.19541400	0.89026600
С	-0.52929300	-0.77566400	0.53136400
С	-1.39066000	-0.68569900	1.64506700
С	-2.45446800	-1.57197100	1.78056900
С	-2.72210700	-2.54723800	0.82185800
С	-1.86742500	-2.63640000	-0.27123400
С	-0.77061200	-1.78843600	-0.41938500

Н	-2.02597400	4.18233200	-0.04538500
Н	2.21598900	2.13823900	1.44483300
Н	-3.72643600	1.43099500	0.31012000
Н	4.69623200	0.19730700	-2.11990400
Н	4.47624100	-2.33651100	1.31045300
Н	-3.09849100	-1.49218300	2.65065200
Н	-2.05888200	-3.38441500	-1.03340200
С	0.11069000	-1.95908700	-1.63131000
Н	1.11498000	-2.27656100	-1.34247000
Н	-0.30955800	-2.70473400	-2.30861100
Н	0.21019200	-1.01876200	-2.17619200
С	-1.19842000	0.36181700	2.71486800
Н	-0.14536400	0.49727400	2.96805600
Н	-1.56661500	1.33574600	2.38176400
Н	-1.73868300	0.08542700	3.62237800
С	1.98008500	-1.79527600	2.06757500
Н	1.50205900	-1.03000000	2.68256100
Н	1.18675400	-2.46639500	1.73068200
Н	2.66784400	-2.36149800	2.69844500
С	2.27483100	1.29701300	-1.98335800
Н	1.24052800	1.06783100	-2.24642000
Н	2.26880200	2.29247900	-1.53196800
Н	2.86837800	1.34221900	-2.89870900
С	-3.88520300	-3.48920300	0.98122100
Н	-4.75948100	-2.97170600	1.38404100
Н	-4.15703800	-3.94334000	0.02622200
Н	-3.63960100	-4.29915600	1.67591300
С	6.13931700	-1.63243600	-0.72223400
Н	6.63563200	-1.95834100	0.19426900
Н	6.10836600	-2.48973100	-1.40306600
Н	6.74878300	-0.86008300	-1.19654200
Н	-4.49052100	-1.31494300	-1.00885700
Н	-5.46786800	0.14557200	-1.32843700
Н	-4.70232200	-0.72985000	-2.68009400
Н	1.72913100	4.49509500	2.00209700
Н	-0.41286900	5.51586200	1.27686500

Transitional State (TS[‡])

HF zero-point energy = -1236.6016961 Zero-point correction = 0.505659 (Hartree/Particle) Thermal correction to Energy= 0.535879 Thermal correction to Enthalpy= 0.536823 Thermal correction to Gibbs Free Energy= 0.441976 Sum of electronic and zero-point Energies= -1236.096037 Sum of electronic and thermal Energies= -1236.065817 Sum of electronic and thermal Enthalpies= -1236.064873 Sum of electronic and thermal Free Energies= -1236.159721

С	-1.08443800	-3.26100100	2.97424000
С	0.13018100	-2.63819900	3.24094100
С	0.57023300	-1.61540000	2.41024800
С	-0.19193400	-1.14920500	1.32974300
С	-1.41581300	-1.79531200	1.06485600
С	-1.83834400	-2.84897500	1.88262500
С	-2.22677500	-1.49612200	-0.12606100
Ν	-2.63855700	-0.25741800	-0.51270700
Ν	-3.33362600	-0.35735600	-1.60906400
Ν	-3.38181300	-1.65466600	-1.94647300
С	-2.70926100	-2.40013500	-1.04957100
В	0.44543900	0.03521300	0.51170100
С	-4.08017500	-2.09222700	-3.14245100
С	-0.23332200	1.43139700	0.34819000

С	-0.23620000	2.07661100	-0.90748400
С	-0.79925800	3.34177900	-1.04046300
С	-1.34329300	4.02035400	0.04702800
С	-1.32842100	3.38565400	1.28536400
С	-0.80575800	2.10481100	1.44769100
С	1.89350900	-0.20595300	-0.04891400
С	2.94237800	0.68593000	0.25564500
С	4.22355200	0.44934100	-0.24187500
С	4.49970300	-0.63118500	-1.07385000
C	3.45676600	-1.50255400	-1.38175800
С	2.17537800	-1.31762700	-0.87200100
н	1.53624900	-1.16271600	2.60222300
н	-2.77595600	-3.34292200	1.65854900
н	-2.60869600	-3.46738300	-1.13806200
н	-0.81282000	3.81254200	-2.01805500
н	-1./4052300	3.89898200	2.14/96400
н	5.02453200	1.131/4000	0.02312100
Н	3.64831400	-2.35013700	-2.031/8600
C	-0.84543400	1.49209100	2.82636700
н	-1.49188000	0.61207500	2.84613400
н	0.14297600	1.16019900	3.15343300
Н	-1.2211/000	2.21337700	3.55426500
	0.31634400	1.41111200	-2.14508700
н	0.03007900	1.96996800	-3.03/94500
	1.40591500	1.34819500	-2.11010200
	-0.05954800	0.39076500	-2.24838200
Ľ	2.72097400	1.90720000	0.56972400
п	2.19391000	2.00421000	2 00510100
Ц	2.13034000	2 21/22/00	1 44667200
\hat{c}	1 00724000	-2 30238800	1.44007200
й	0 80939900	-2.30230000	-1.23376000
н	0.00939900	-2.92200000	-0.40333300
н	1 44195600	-2 95785500	-2.05769100
c	-1 95923900	5 38300700	-0 11890800
н	-3 02363900	5 29883200	-0.36267400
н	-1 87820700	5 96659300	0.80064900
н	-1 48001700	5 93617400	-0.92966500
C	5.87545200	-0.83927800	-1.64683500
Ĥ	6.10582400	-1.90276100	-1.74282000
H	5.94909300	-0.39752300	-2.64624900
H	6.63769500	-0.37006400	-1.02161500
H	-1.43830200	-4.06838000	3.60299200
н	0.73850500	-2.95907700	4.07754100
н	-4.86553000	-2.79942500	-2.87525800
Н	-4.51858300	-1.21317500	-3.60918200
н	-3.37923200	-2.56505200	-3.83083900

Closed Conformer (TS^c)

HF zero-point energy = -1236.6206856 Zero-point correction= 0.509217 (Hartree/Particle) Thermal correction to Energy= 0.538429 Thermal correction to Enthalpy= 0.539373 Thermal correction to Gibbs Free Energy= 0.449204 Sum of electronic and zero-point Energies= -1236.111468 Sum of electronic and thermal Energies= -1236.082257 Sum of electronic and thermal Enthalpies= -1236.081313 Sum of electronic and thermal Free Energies=-1236.171481

С	0.40541900	1.26618800	-1.30178700
С	0.15015400	2.58603600	-0.87790800

-			
С	-0.39928300	2.55164400	0.46019900
N	-0 41575900	1 28514800	0 95452300
	0.41070000	1.20014000	0.00402000
Ν	-0.92142000	1.23694900	2.15338300
С	1 00992300	3 50851300	-2 90717400
č	1 20002500	0.01400400	2.00717100
C	1.30902500	2.21402400	-3.33925200
С	1.02261500	1.10950400	-2.54071000
Ĉ	0 42605500	2 70/10200	1 65700500
	0.43003300	3.70419300	-1.05709500
Ν	-1.22015200	2.48801000	2.45/39500
С	-0.92313900	3 34787600	1 45012700
Ē	0.00061000	0.10100000	0 1 5 5 0 0 0 0
Б	0.03961000	0.10130300	-0.15583800
С	-1.84618700	2.80045100	3.73500900
C	-1 30206800	-0 77855200	-0 2/970800
Š	-1.50230000	-0.77033200	-0.2+370000
C	-1.51095/00	-1./6943900	0.73848300
С	-2.64488700	-2.58329700	0.70691500
ĉ	-3 61203700	2 46350000	-0.28220700
Š	-3.01233700	-2.40333000	-0.20229700
С	-3.42664500	-1.47144600	-1.23621400
С	-2.30813300	-0.63305700	-1.23009500
č	1 40074000	0.00000070000	0.10010700
C	1.433/4800	-0.63878200	0.13819700
С	1.71085100	-1.79831500	-0.62131200
С	2 90405500	-2 50147600	-0 44181400
Š	2.30+03300	-2.30147000	-0.44101400
C	3.86804400	-2.10083400	0.4/40/500
С	3.62013900	-0.93240000	1.18451200
Ċ	2 1/380200	-0 19800500	1 02101500
	2.44000200	-0.13000300	1.02101300
н	1.28246800	0.12012500	-2.89520400
н	0.22618900	4.70350100	-1.29478600
Ц.	1 10055200	4 40206600	1 50100000
п	-1.10955200	4.40390000	1.52155600
н	-2.77343000	-3.33140600	1.48328600
н	-4 17897400	-1 33436000	-2 00669400
÷÷	2 00200200	0.00700000	1 0 4 0 0 4 4 0 0
п	3.08399300	-3.38/02000	-1.04384400
н	4.37314300	-0.56627100	1.87566900
С	-2 24668800	0 40850900	-2 32278400
ň	0.10044000	1 41 0000000	1 00070000
п	-2.10244200	1.41299800	-1.922/9900
Н	-1.41417500	0.22739900	-3.00527700
н	-3 17106500	0 39984800	-2 90424000
~	0.17100000	0.00001000	1 00075000
C	-0.53196400	-2.03592000	1.86075600
Н	-1.03044200	-2.57451000	2.67030100
н	0 30/7/000	-2 64605800	1 51116200
	0.00+7+000	-2.0+005000	0.0074.0000
н	-0.10616300	-1.12145500	2.26/16300
С	0.75357100	-2.36213300	-1.64948000
н	-0 01000300	-2 97310200	-1 17522/00
	-0.01300300	-2.37310200	-1.17 322+00
н	0.22969200	-1.58592200	-2.20438300
Н	1.29648700	-2.99081700	-2.35918200
C	2 33648000	1 08502200	1 81200700
	2.00040000	1.00592500	1.01200700
н	2.08340700	1.92988700	1.16///900
Н	1.57175100	1.02623200	2.58959400
ш	2 20010000	1 20077700	2 20706000
	3.20010000	1.306///00	2.29790000
н	1.24121300	4.35781700	-3.53740300
н	1.77538200	2.07023300	-4.30664100
$\hat{\mathbf{C}}$	E 10001000	2 00666200	0 60010000
C	5.12651200	-2.09000300	0.00010000
С	-4.80832400	-3.37835200	-0.32416700
н	-5 65690500	-2 89598100	-0 81475600
11	4 50040400	4 000000000	0.00070000
п	-4.38243100	-4.29309300	-0.882/8900
Н	-5.11141900	-3.67761500	0.68204900
н	5 96383200	-2 24715800	0 96027000
	E 00150000	2.21710000	1 40047000
н	2.00128300	-3.62289900	1.49847900
Н	5.39963800	-3.45400500	-0.21141600
н	-1 66820200	1 96675700	4 40910600
	1.00020200	0.70000000	4 4 00 5 5 4 00
н	-1.39805200	3.70866900	4.13355100
Н	-2.91721300	2.94429400	3.59294200

4. Crystal Data

4.1. Trz-Me

Table S5. Crystal data and structure refinement for Trz-Me.

Empirical formula C60.50H63B2CIN6 Formula weight 931.24 Temperature 150(2) K Wavelength 1.54184 Å Crystal system Triclinic Space group P-1 Unit cell dimensions a = 13.9954(7) Å α= 69.831(4)°. b = 14.3264(6) Å β= 78.920(4)°. c = 14.4940(7) Å $\gamma = 85.791(4)^{\circ}$. 2677.0(2) Å³ Volume Ζ 2 1.155 Mg/m³ Density (calculated) 0.959 mm⁻¹ Absorption coefficient F(000) 990 Crystal colour and habit Colorless prism 0.274 x 0.173 x 0.105 mm³ Crystal size 3.218 to 74.112°. Theta range for data collection Index ranges -17<=h<=17, -17<=k<=9, -17<=l<=17 19208 **Reflections collected** Independent reflections 10567 [R(int) = 0.0368] Completeness to theta = 67.684° 99.9 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 1.00000 and 0.88923 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 10567 / 0 / 654 Goodness-of-fit on F^2 1.106 R1 = 0.0637, wR2 = 0.1873 Final R indices [I>2sigma(I)] R indices (all data) R1 = 0.0837, wR2 = 0.1969 Extinction coefficient n/a 0.608 and -0.352 e.Å⁻³ Largest diff. peak and hole

Definitions:

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|} \qquad wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}\right)\right]}{\sum \left[w\left(F_{o}^{2}\right)}\right]}}$$
$$GooF = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)\right]}{(n-p)}}$$

n = number of reflections; p = number of parameters

Notes on the refinement of Trz-Me.

(n-p)

All hydrogen atoms were placed in calculated positions and refined by using a riding model.

r

	Х	У	Z	U(eq)	
C(1)	9998(2)	189(2)	3962(2)	31(1)	·····
C(2)	9690(2)	893(2)	4439(2)	32(1)́	
C(3)	9673(2)	723(2)	5448(2)	33(1)	
C(4)	9425(2)	1813(2)	3704(2)	34(1)	
C(5)	9034(2)	2736(2)	3614(2)	38(1)	
C(6)	8718(2)	4181(2)	2132(2)	38(1)	
C(7)	9241(2)	4773(2)	1244(2)	54(1)	
C(8)	8923(3)	5745(2)	820(2)	61(1) 50(1)	
C(9)	0101(2) 7501(2)	5503(2)	1200(2)	52(1) 51(1)	
C(10)	7896(2)	4541(2)	2594(2)	45(1)	
C(12)	7761(3)	7177(2)	807(3)	72(1)	
C(12)	11122(2)	505(2)	2241(2)	34(1)	
C(14)	11404(2)	-413(2)	2103(2)	38(1)	
Č(15)	12386(2)	-623(2)	1822(2)	50(1)	
C(16)	13121(2)	42(3)	1669(2)	55(1)	
C(17)	12846(2)	939(3)	1775(2)	51(1)	
C(18)	11876(2)	1185(2)	2055(2)	43(1)	
C(19)	10687(2)	-1213(2)	2242(2)	43(1)	
C(20)	14180(3)	-224(4)	1411(3)	79(1)	
C(21)	11692(3)	2208(3)	2138(3)	59(1)	
C(22)	9149(2)	332(2)	2270(2)	29(1)	
C(23)	8328(2)	-254(2)	2831(2)	34(1)	
C(24)	7009(2) 7707(0)	-497(2)	2304(2)	37(1)	
C(25)	7737(Z) 8530(2)	-100(2)	1320(2)	36(1)	
C(20)	9222(2)	681(2)	1214(2)	33(1)	
C(28)	8112(2)	-647(2)	3962(2)	42(1)	
C(29)	6967(2)	-382(2)	833(2)	50(1)	
C(30)	10047(2)	1335(2)	514(2)	37(1)	
C(40)	5111(2)	1014(2)	4930(2)	35(1)	
C(41)	5459(2)	650(2)	4137(2)	35(1)	
C(42)	5364(2)	-331(2)	4191(2)	35(1)	
C(43)	5897(2)	1470(2)	3269(2)	36(1)	
C(44)	6412(2)	1688(2)	2319(2)	40(1)	
C(45)	/021(2)	3309(2)	1017(2)	41(1)	
C(46)	6693(3)	4278(2)	621(2)	60(1) 05(1)	
C(47)	7152(3)	4850(2)	-318(3)	65(1) 50(1)	
C(40)	7910(3) 8205(3)	4409(2) 2504(2)	-007(2)	52(1) 55(1)	
C(49)	7761(2)	2914(2)	-439(2) 512(2)	51(1)	
C(51)	8399(3)	5097(3)	-1908(2)	68(1)	
C(52)	6118(2)	2658(2)	4980(2)	33(1)	
C(53)	6821(2)	2066(2)	5516(2)	36(1)	
C(54)	7460(2)	2494(2)	5881(2)	41(1)́	
C(55)	7460(2)	3502(2)	5727(2)	42(1)	
C(56)	6814(2)	4097(2)	5152(2)	39(1)	
C(57)	6159(2)	3700(2)	4776(2)	35(1)	
C(58)	6937(2)	957(2)	5718(2)	46(1)	
C(59)	8137(3)	3934(3)	6164(3)	63(1)	
C(60)	5510(2)	4433(2)	4137(2)	38(1)	

Table S6. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for Trz-Me. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(61)	4177(2)	2678(2)	4828(2)	37(1)
C(62)	3817(2)	2727(2)	5796(2)	41(1)́
C(63)	2852(2)	3003(2)	6051(3)	53(1)
C(64)	2206(2)	3239(2)	5397(3)	60(1)
C(65)	2551(2)	3197(2)	4456(3)	58(1)
C(66)	3512(2)	2920(2)	4163(2)	48(1)
C(67)	4426(2)	2492(2)	6605(2)	45(1)
C(68)	1157(3)	3500(3)	5713(4)	91(2)
C(69)	3781(3)	2886(3)	3119(3)	72(1)
B(1)	9994(2)	634(2)	2753(2)	31(1)
B(2)	5268(2)	2215(2)	4618(2)	35(1)
N(1)	9640(2)	1764(1)	2768(2)	32(1)
N(2)	9402(2)	2593(2)	2094(2)	34(1)
N(3)	9040(2)	3185(2)	2619(2)	35(1)
N(4)	5749(2)	2349(2)	3444(2)	35(1)
N(5)	6146(2)	3100(2)	2672(2)	38(1)
N(6)	6543(2)	2687(2)	1986(2)	39(1)
C(31)	4112(9)	6877(8)	1345(11)	121(5)
CI(1)	4488(3)	5762(3)	1998(3)	137(1)
CI(2)	4891(4)	7484(4)	287(5)	207(3)

Table S7. Bond lengths [Å] and angles [°] for Trz-Me.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			C(24)-H(24)	0.9500
$\begin{array}{llllllllllllllllllllllllllllllllllll$			C(25)-C(26)	1.387(4)
$\begin{array}{ccccc} C(1)-E(1) & 1.40E(3) & C(25)-C(29) & 1.510(4) \\ C(1)-E(1) & 1.46E(3) & C(26)-C(27) & 1.386(4) \\ C(2)-C(3) & 1.394(3) & C(26)-H(26) & 0.9500 \\ C(3)-C(1)\#1 & 1.394(3) & C(28)-H(28A) & 0.9800 \\ C(3)-H(1)\#1 & 1.357(3) & C(28)-H(28A) & 0.9800 \\ C(4)-N(1) & 1.357(3) & C(28)-H(28A) & 0.9800 \\ C(4)-C(5) & 1.366(4) & C(29)-H(29A) & 0.9800 \\ C(5)-H(5) & 0.9500 & C(29)-H(29A) & 0.9800 \\ C(5)-H(5) & 0.9500 & C(29)-H(29A) & 0.9800 \\ C(5)-H(5) & 0.9500 & C(29)-H(29A) & 0.9800 \\ C(6)-C(7) & 1.374(4) & C(30)-H(30B) & 0.9800 \\ C(6)-C(7) & 1.374(4) & C(30)-H(30B) & 0.9800 \\ C(6)-C(1) & 1.375(4) & C(30)-H(30B) & 0.9800 \\ C(6)-C(1) & 1.332(4) & C(40)-C(42)\#2 & 1.391(4) \\ C(7)-H(7) & 0.9500 & C(40)-C(41) & 1.410(4) \\ C(8)-C(9) & 1.371(4) & C(40)-B(2) & 1.642(4) \\ C(8)-H(6) & 0.95500 & C(41)-C(42) & 1.396(3) \\ C(9)-C(10) & 1.382(4) & C(41)-C(42) & 1.396(3) \\ C(9)-C(10) & 1.382(4) & C(41)-C(42) & 1.396(3) \\ C(9)-C(10) & 1.382(4) & C(41)-C(42) & 1.396(3) \\ C(10)-C(11) & 1.379(4) & C(42)-H(42) & 0.9500 \\ C(10)-H(10) & 0.9500 & C(43)-N(4) & 1.367(4) \\ C(10)-C(11) & 1.379(4) & C(42)-H(42) & 0.9500 \\ C(10)-H(10) & 0.9500 & C(43)-N(4) & 1.367(3) \\ C(12)-H(12A) & 0.9800 & C(44)-H(44) & 0.9500 \\ C(12)-H(12B) & 0.9800 & C(44)-H(44) & 0.9500 \\ C(12)-H(12C) & 0.9800 & C(44)-H(46) & 0.1368(3) \\ C(12)-H(12C) & 0.9800 & C(44)-H(46) & 0.9500 \\ C(12)-H(12B) & 0.9800 & C(50)-H(50) & 1.355(4) \\ C(13)-C(16) & 1.389(5) & C(47)-H(47) & 0.9500 \\ C(17)-H(17) & 0.9500 & C(50)-H(50) & 1.356(3) \\ C(14)-C(17) & 1.365(5) & C(48)-C(51) & 1.371(4) \\ C(16)-C(17) & 1.365(5) & C(48)-C(51) & 1.384(4) \\ C(17)-H(17) & 0.9500 & C(50)-H(50) & 0.9500 \\ C(13)-H(19B) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(13)-H(19B) & 0.9800 & C(5$	C(1)-C(3)#1	1.394(3)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)-C(2)	1.408(3)	C(25)-C(29)	1.510(4)
$\begin{array}{ccccc} C(2)-C(3) & 1.394(3) & C(26)-H(26) & 0.9500 \\ C(2)-C(4) & 1.457(3) & C(27)-C(30) & 1.514(3) \\ C(3)-C(1)\#1 & 1.394(3) & C(28)-H(28A) & 0.9800 \\ C(3)-H(3) & 0.9500 & C(28)-H(28B) & 0.9800 \\ C(4)-N(1) & 1.357(3) & C(28)-H(28B) & 0.9800 \\ C(4)-N(1) & 1.357(3) & C(29)-H(29A) & 0.9800 \\ C(5)-N(3) & 1.366(4) & C(29)-H(29B) & 0.9800 \\ C(5)-H(5) & 0.9500 & C(29)-H(29C) & 0.9800 \\ C(6)-C(7) & 1.374(4) & C(30)-H(30B) & 0.9800 \\ C(6)-C(7) & 1.375(4) & C(30)-H(30B) & 0.9800 \\ C(6)-C(7) & 0.9500 & C(40)-H(30B) & 0.9800 \\ C(6)-C(7) & 0.9500 & C(40)-C(41) & 1.410(4) \\ C(7)-C(8) & 1.392(4) & C(40)-C(42)\#2 & 1.391(4) \\ C(7)-H(7) & 0.9500 & C(41)-C(42) & 1.396(3) \\ C(9)-C(10) & 1.382(4) & C(41)-C(42) & 1.396(3) \\ C(9)-C(12) & 1.512(4) & C(42)-C(42) & 1.396(3) \\ C(9)-C(11) & 1.379(4) & C(42)-H(42) & 0.9500 \\ C(10)-H(10) & 0.9500 & C(43)-N(4) & 1.367(4) \\ C(12)-H(12) & 0.9800 & C(44)-N(6) & 1.345(4) \\ C(12)-H(12B) & 0.9800 & C(44)-N(6) & 1.345(4) \\ C(13)-C(18) & 1.412(4) & C(45)-C(46) & 1.386(4) \\ C(13)-C(18) & 1.397(4) & C(46)-C(47) & 1.381(5) \\ C(14)-C(15) & 1.397(4) & C(46)-C(47) & 1.381(5) \\ C(14)-C(15) & 1.395(5) & C(47)-H(47) & 0.9500 \\ C(14)-C(19) & 1.515(4) & C(47)-H(47) & 0.9500 \\ C(14)-C(19) & 1.515(4) & C(47)-H(47) & 0.9500 \\ C(14)-C(19) & 1.515(4) & C(47)-H(47) & 0.9500 \\ C(15)-H(15) & 0.9500 & C(50)-H(50) & 1.356(4) \\ C(14)-C(17) & 1.365(5) & C(56) & 1.338(4) \\ C(14)-C(17) & 1.365(5) & C(56) & 1.338(4) \\ C(14)-H(20) & 0.9800 & C(52)-C(57) & 1.420(3) \\ C(20)-H(20A) & 0.9800 & C(52)-C(57) & 1.420(3) \\ C(20)-H(20B) & 0.9800 & C(52)-C(57) & 1.336(4) \\ C(21)-H(21A) & 0.9800 & C(52)-C(57) & 1.336(4) \\ C(21)-H(21B) & 0.9800 & C(53)-C(56) & 1.338(4) \\ C(21)-H(21B) & 0.9800 & C(53)-C(56) & 1.338(4) \\ C(21)-H(21B) & 0.9800 & C(53$	C(1)-B(1)	1.646(3)	C(26)-C(27)	1.386(4)
$\begin{array}{ccccc} C(2)-C(1)\#1 & 1.457(3) & C(27)-C(30) & 1.514(3) \\ C(3)-C(1)\#1 & 1.394(3) & C(28)+H(28A) & 0.9800 \\ C(3)-H(3) & 0.9500 & C(28)-H(28C) & 0.9800 \\ C(4)-C(5) & 1.366(4) & C(29)-H(29B) & 0.9800 \\ C(5)-H(5) & 0.9500 & C(29)-H(29B) & 0.9800 \\ C(5)-H(5) & 0.9500 & C(29)-H(29C) & 0.9800 \\ C(6)-C(7) & 1.374(4) & C(30)-H(30A) & 0.9800 \\ C(6)-C(7) & 1.374(4) & C(30)-H(30B) & 0.9800 \\ C(6)-C(11) & 1.375(4) & C(30)-H(30B) & 0.9800 \\ C(6)-K(3) & 1.439(3) & C(30)-H(30C) & 0.9800 \\ C(6)-K(3) & 1.439(3) & C(30)-H(30C) & 0.9800 \\ C(7)-C(8) & 1.392(4) & C(40)-C(42)\#2 & 1.391(4) \\ C(7)-H(7) & 0.9500 & C(41)-C(42) & 1.442(4) \\ C(8)-C(9) & 1.371(4) & C(40)-E(2) & 1.642(4) \\ C(8)-C(9) & 1.371(4) & C(40)-E(2) & 1.642(4) \\ C(9)-C(10) & 1.382(4) & C(41)-C(42) & 1.396(4) \\ C(9)-C(10) & 1.382(4) & C(42)-H(42) & 0.9500 \\ C(10)-H(10) & 0.9500 & C(43)-V(4) & 1.361(3) \\ C(11)-H(11) & 0.9500 & C(43)-V(4) & 1.361(3) \\ C(11)-H(11) & 0.9500 & C(44)-H(44) & 0.9500 \\ C(12)-H(12C) & 0.9800 & C(44)-H(46) & 0.9500 \\ C(14)-C(15) & 1.337(4) & C(46)-C(47) & 1.336(3) \\ C(13)-C(14) & 1.415(4) & C(45)-N(6) & 1.441(3) \\ C(13)-C(14) & 1.415(4) & C(45)-N(6) & 1.441(3) \\ C(13)-C(14) & 1.35(5) & C(47)-H(47) & 0.9500 \\ C(14)-C(15) & 1.339(5) & C(47)-H(47) & 0.9500 \\ C(15)-H(15) & 0.9500 & C(50)-H(50) & 0.9300 \\ C(15)-H(15) & 0.9500 & C(50)-H(50) & 0.9300 \\ C(15)-H(15) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(15)-H(15) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(15)-H(17) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(19)-H(19A) & 0.9800 & C(52)-C(53) & 1.417(4) \\ C(20)-H(20A) & 0.9800 & C(52)-C(55) & 1.333(4) \\ C(21)-H(21B) & 0.9800 & C(52)-C(55) & 1.333(4) \\ C(21)-H(21B) & 0.9800 & C(52)-C(55) & 1.333(4) \\ C(22)-C(27) & 1.422(3) & C(55)-C(56) & 1.338$	C(2)-C(3)	1.394(3)	C(26)-H(26)	0.9500
$\begin{array}{c} C(3)-C(1)\#1 & 1.394(3) & C(28)-H(28A) & 0.9800 \\ C(4)-N(1) & 1.357(3) & C(28)-H(28B) & 0.9800 \\ C(4)-C(5) & 1.366(4) & C(29)-H(29B) & 0.9800 \\ C(5)-N(3) & 1.360(3) & C(29)-H(29B) & 0.9800 \\ C(5)-N(3) & 1.374(4) & C(30)-H(30A) & 0.9800 \\ C(6)-C(7) & 1.374(4) & C(30)-H(30B) & 0.9800 \\ C(6)-C(7) & 1.374(4) & C(30)-H(30B) & 0.9800 \\ C(6)-C(11) & 1.375(4) & C(30)-H(30C) & 0.9800 \\ C(6)-C(11) & 1.375(4) & C(30)-H(30C) & 0.9800 \\ C(7)-C(8) & 1.392(4) & C(40)-C(42)\#2 & 1.391(4) \\ C(7)-H(7) & 0.5500 & C(40)-C(42)#2 & 1.391(4) \\ C(8)-H(8) & 0.95500 & C(41)-C(42) & 1.496(3) \\ C(9)-C(10) & 1.382(4) & C(41)-C(42) & 1.936(3) \\ C(9)-C(10) & 1.382(4) & C(41)-C(42) & 1.396(3) \\ C(9)-C(10) & 1.382(4) & C(41)-C(42) & 1.396(3) \\ C(10)-C(11) & 1.379(4) & C(42)-H(42) & 0.95500 \\ C(10)-H(10) & 0.9500 & C(43)-N(4) & 1.367(4) \\ C(12)-H(12B) & 0.9800 & C(44)-H(44) & 0.95500 \\ C(12)-H(12B) & 0.9800 & C(44)-H(44) & 0.95500 \\ C(12)-H(12C) & 0.9800 & C(44)-H(44) & 0.95500 \\ C(14)-C(15) & 1.397(4) & C(46)-H(46) & 0.95500 \\ C(14)-C(15) & 1.397(4) & C(46)-H(46) & 0.95500 \\ C(14)-C(15) & 1.397(4) & C(46)-H(46) & 0.95500 \\ C(14)-C(16) & 1.338(4) & C(47)-C(48) & 1.381(5) \\ C(14)-C(15) & 1.397(4) & C(46)-H(46) & 0.95500 \\ C(15)-H(15) & 0.95500 & C(50)-H(51) & 0.95500 \\ C(14)-C(16) & 1.398(4) & C(49)-H(49) & 0.9500 \\ C(15)-H(15) & 0.9500 & C(51)-H(51B) & 0.9800 \\ C(17)-H(17) & 0.95500 & C(50)-H(51) & 0.95500 \\ C(17)-H(17) & 0.95500 & C(50)-H(51) & 0.95500 \\ C(17)-H(17) & 0.95500 & C(51)-H(51B) & 0.9800 \\ C(17)-H(17) & 0.95500 & C(52)-C(53) & 1.371(4) \\ C(20)-H(20A) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(17)-H(19A) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(17)-H(19A) & 0.9$	C(2)-C(4)	1.457(3)	C(27)-C(30)	1.514(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)-C(1)#1	1.394(3)	C(28)-H(28A)	0.9800
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(3)-H(3)	0.9500	C(28)-H(28B)	0.9800
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4)-N(1)	1.357(3)	C(28)-H(28C)	0.9800
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(4)-C(5)	1.366(4)	C(29)-H(29A)	0.9800
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(5)-N(3)	1.360(3)	C(29)-H(29B)	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)-H(5)	0.9500	C(29)-H(29C)	0.9800
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(6)-C(7)	1.374(4)	C(30)-H(30A)	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)-C(11)	1.375(4)	C(30)-H(30B)	0.9800
$\begin{array}{cccccc} C(7)-C(8) & 1.392(4) & C(40)-C(42)\#2 & 1.391(4) \\ C(7)-H(7) & 0.9500 & C(40)-C(41) & 1.410(4) \\ C(8)-C(9) & 1.371(4) & C(40)-B(2) & 1.642(4) \\ C(8)-H(8) & 0.9500 & C(41)-C(42) & 1.396(3) \\ C(9)-C(10) & 1.382(4) & C(41)-C(43) & 1.459(4) \\ C(10)-C(11) & 1.379(4) & C(42)-H(42) & 0.9500 \\ C(10)-H(10) & 0.9500 & C(43)-N(4) & 1.367(4) \\ C(12)-H(12A) & 0.9800 & C(44)-N(6) & 1.358(3) \\ C(12)-H(12B) & 0.9800 & C(44)-H(44) & 0.9500 \\ C(12)-H(12C) & 0.9800 & C(44)-H(44) & 0.9500 \\ C(12)-H(12C) & 0.9800 & C(44)-H(44) & 0.9500 \\ C(12)-H(12C) & 0.9800 & C(45)-C(50) & 1.355(4) \\ C(13)-C(18) & 1.412(4) & C(45)-C(46) & 1.388(4) \\ C(13)-C(18) & 1.412(4) & C(45)-N(6) & 1.441(3) \\ C(13)-C(18) & 1.412(4) & C(46)-C(47) & 1.381(4) \\ C(13)-C(14) & 1.637(4) & C(46)-H(46) & 0.9500 \\ C(14)-C(15) & 1.397(4) & C(46)-H(46) & 0.9500 \\ C(14)-C(15) & 1.387(5) & C(47)-H(47) & 0.9500 \\ C(14)-C(15) & 1.384(5) & C(47)-H(47) & 0.9500 \\ C(15)-H(15) & 0.9500 & C(48)-C(51) & 1.517(4) \\ C(16)-C(17) & 1.365(5) & C(48)-C(51) & 1.517(4) \\ C(16)-C(17) & 1.365(5) & C(48)-C(51) & 1.517(4) \\ C(16)-C(17) & 1.396(4) & C(49)-H(49) & 0.9500 \\ C(17)-H(17) & 0.9500 & C(50)-H(50) & 0.9500 \\ C(19)-H(19A) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(17)-H(17) & 0.9500 & C(50)-H(50) & 0.9500 \\ C(19)-H(19A) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(19)-H(19A) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(19)-H(19C) & 0.9800 & C(51)-H(51B) & 0.9800 \\ C(19)-H(19C) & 0.9800 & C(52)-C(57) & 1.420(3) \\ C(20)-H(20A) & 0.9800 & C(52)-C(57) & 1.420(3) \\ C(20)-H(20A) & 0.9800 & C(52)-C(57) & 1.381(4) \\ C(21)-H(21B) & 0.9800 & C(52)-C(57) & 1.384(4) \\ C(21)-H(21B) & 0.9800 & C(52)-C(56) & 1.384(4) \\ C(21)-H(21B) & 0.9800 & C(52)-C(57) & 1.383(4) \\ C(22)-C(27) & 1.422(3) & C(55)-C(56) & 1.388(4) $	C(6)-N(3)	1.439(3)	C(30)-H(30C)	0.9800
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(7)-C(8)	1.392(4)	C(40)-C(42)#2	1.391(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)-H(7)	0.9500	C(40)-C(41)	1.410(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)-C(9)	1.371(4)	C(40)-B(2)	1.642(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(8)-H(8)	0.9500	C(41)-C(42)	1.396(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(9)-C(10)	1.382(4)	C(41)-C(43)	1.459(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)-C(12)	1.512(4)	C(42)-C(40)#2	1.390(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-C(11)	1.3/9(4)	C(42)-H(42)	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)-H(10)	0.9500	C(43)-N(4)	1.361(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)-H(11)	0.9500	C(43)-C(44)	1.367(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)-H(12A)	0.9800	C(44)-N(6)	1.358(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G(12)-H(12B)	0.9800	C(44)-H(44)	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)-H(12C)	0.9800	C(45)- $C(50)$	1.355(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)-C(18)	1.412(4)	C(45)-C(46)	1.388(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(13)-O(14)	1.415(4)	C(45) - IN(6)	1.441(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(13)-B(1)	1.037(4)	C(46) - C(47)	1.381(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) - C(15)	1.397(4)		0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14) - C(19)	1.313(4)	C(47) - C(48)	1.403(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) - C(16)	0.0500	$C(47) - \Pi(47)$	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C(15) = \Pi(15)$ C(16) = C(17)	1 265(5)	C(48) - C(49)	1.571(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10) - C(17) C(16) - C(20)	1.505(5)	C(48) - C(51)	1 20/(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10) - C(20) C(17) - C(18)	1 396(4)	C(49) - C(30)	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17) - U(17)	0.9500	C(50) - H(50)	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)- $C(21)$	1 511(4)	C(51)-H(51A)	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19) - H(19A)	0.9800	C(51)-H(51B)	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-H(19B)	0.9800	C(51)-H(51C)	0.0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)-H(19C)	0.9800	C(52)- $C(53)$	1 417(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)-H(20A)	0.9800	C(52)- $C(57)$	1 420(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)-H(20B)	0.9800	C(52)-B(2)	1 636(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)-H(20C)	0.9800	C(53)-C(54)	1 394(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)-H(21A)	0.9800	C(53)-C(58)	1 514(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)-H(21B)	0.9800	C(54)- $C(55)$	1 383(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)-H(21C)	0.9800	C(54)-H(54)	0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)-C(23)	1.413(3)	C(55)-C(56)	1.388(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)-C(27)	1.422(3)	C(55)-C(59)	1.507(4)
$\begin{array}{ccccccc} C(23)-C(24) & 1.393(4) & C(56)-H(56) & 0.9500 \\ C(23)-C(28) & 1.514(4) & C(57)-C(60) & 1.516(4) \\ C(24)-C(25) & 1.392(4) & C(57)-C(60) & 0.9800 \\ \end{array}$	C(22)-B(1)	1.636(4)	C(56)-C(57)	1.395(4)
C(23)-C(28) 1.514(4) C(57)-C(60) 1.516(4) C(24) C(25) 1.382(4) C(58) H(584) 0.9800	C(23) - C(24)	1.393(4)	C(56)-H(56)	0.9500
C(24) C(25) = 1.382(4) C(58) H(58A) 0.9800	C(23)-C(28)	1.514(4)	C(57)-C(60)	1.516(4)
$O(24)^{-}O(25)$ 1.302(4) $O(30)^{-}O(30A)$ 0.3000	C(24)-C(25)	1.382(4)	C(58)-H(58A)	0.980Ò ́

C(58)-H(58B)	0.9800	C(6)-C(7)-C(8)	118.8(3)
C(58)-H(58C)	0.9800	C(6)-C(7)-H(7)	120.6
C(59)-H(59A)	0.9800	C(8)-C(7)-H(7)	120.6
C(59)-H(59B)	0.9800	C(9)-C(8)-C(7)	121.7(3)
C(59)-H(59C)	0.9800	C(9)-C(8)-H(8)	119.2
C(60)-H(60A)	0.9800	C(7)-C(8)-H(8)	119.2
C(60)-H(60B)	0.9800	C(8)-C(9)-C(10)	118.2(3)
C(60)-H(60C)	0.9800	C(8)-C(9)-C(12)	121.7(3)
C(61)-C(66)	1.409(4)	C(10)-C(9)-C(12)	120.1(3)
C(61)-C(62)	1.420(4)	C(11)-C(10)-C(9)	121.3(3)
C(61)-B(2)	1.635(4)	C(11)-C(10)-H(10)	119.3
C(62)-C(63)	1.396(4)	C(9) - C(10) - H(10)	119.3
C(62)-C(67)	1.511(4)	C(6)-C(11)-C(10)	119.5(3)
C(63)-C(64)	1.375(5)	C(6)-C(11)-H(11)	120.3
C(63)-H(63)	0.9500	C(10)-C(11)-H(11)	120.3
C(64)-C(65)	1.377(6)	C(9)-C(12)-H(12A)	109.5
C(64)- $C(68)$	1 512(5)	C(9)-C(12)-H(12B)	109.5
C(65)-C(66)	1 402(4)	H(12A)-C(12)-H(12B)	109.5
C(65) - H(65)	0.9500	C(9)-C(12)-H(12C)	109.5
C(66)- $C(69)$	1 504(5)	$H(12\Delta)_{-}C(12)_{-}H(12C)$	109.5
C(67) - H(67A)	0.9800	H(12R) - C(12) - H(12C)	109.5
C(67) - H(67R)	0.9800	$C(18)_{-}C(13)_{-}C(14)$	116 /(2)
C(67) - H(67C)	0.9800	C(18)-C(13)-B(1)	12/ 0(2)
C(68) - H(68A)	0.9800	C(14) - C(13) - B(1)	119 0(2)
C(68) - H(68R)	0.9800	C(14) - C(13) - D(1)	120 4(2)
C(60) = H(60D)	0.9800	C(15) - C(14) - C(15)	116 2(2)
$C(60) = \Pi(60C)$	0.9800	C(12) C(14) C(19)	10.3(3)
$C(69) - \Pi(69R)$	0.9800	C(16) C(15) C(14)	123.3(2)
$C(09) - \Pi(09B)$	0.9800	C(16) - C(15) - C(14)	122.4(3)
P(1) N(1)	1 664(2)	C(16)-C(15)-H(15) C(14)-C(15)-H(15)	110.0
D(1) - N(1) P(2) N(4)	1.655(4)	C(17) - C(16) - C(15)	117.0
D(2) - IN(4) N(1) N(2)	1.000(4)	C(17) - C(16) - C(15)	101 6(4)
N(1) - N(2) N(2) - N(2)	1.320(3)	C(17) - C(16) - C(20)	121.0(4)
N(2) - N(3) N(4) - N(5)	1.330(3)	C(16) - C(17) - C(20)	121.3(4)
N(4)-N(3)	1.318(3)	C(16) - C(17) - C(18) C(16) - C(17) - U(17)	110 7
$(0)^{-1}(0)$	1.559(5)	C(10) - C(17) - H(17) C(10) - C(17) - H(17)	110.7
C(31) - C(1)	1.000(11)	$C(17) - C(17) - \Pi(17)$	100.7
C(31) - C(2)	0.0000	C(17) - C(10) - C(13)	116 0(3)
$C(31) - \Pi(31R)$	0.9900	C(17) - C(10) - C(21)	100.2(3)
$C(31) - \Pi(31D)$	0.9900	C(13)-C(10)-C(21)	122.9(3)
C(3)#1-C(1)-C(2)	120 5(2)	C(14) - C(19) - H(19R)	109.5
C(3) # 1 - C(1) - B(1)	110.0(2)	U(104) - C(19) - H(19B)	109.5
C(2) - C(1) - D(1)	112.9(2)	$\Box(19A) - \Box(19) - \Box(19B)$	109.5
C(3) - C(2) - C(1)	124.4(2)	U(104) - U(19) - H(190)	109.5
C(3) - C(2) - C(4)	120.0(2)	$\Pi(19R) - G(19) - \Pi(19G)$	109.5
C(1) = C(2) = C(4)	110.0(2)	$\Pi(19D) - G(19) - \Pi(19C)$	109.5
C(1)#1 - C(3) - C(2)	119.2(2)	C(16)-C(20)-H(20A)	109.5
$C(1)#1-C(3)-\Pi(3)$	120.4	G(16)-G(20)-H(20B)	109.5
$U(2) - U(3) - \Pi(3)$	120.4		109.5
N(1) - U(4) - U(5) N(1) - U(4) - U(5)	100.0(<i>2</i>)	U(10)-U(20)-H(200)	109.5
N(1) - U(4) - U(2)	111.2(2)		109.5
U(3) - U(4) - U(2)	142.2(2)	$\Pi(2UD) - U(2U) - \Pi(2UU)$	109.5
N(3) - U(5) - U(4)	104.8(2)	U(18) - U(21) - H(21A)	109.5
N(3)-U(5)-H(5)	127.6	U(18)-U(21)-H(21B)	109.5
U(4)-U(5)-H(5)	127.6	H(21A)-G(21)-H(21B)	109.5
U(7) - U(6) - U(11)	120.6(2)	U(18)-U(21)-H(21U)	109.5
U(7)-U(6)-N(3)	120.8(2)	H(21A)-C(21)-H(21C)	109.5
C(11)-C(6)-N(3)	118.6(2)	H(21B)-C(21)-H(21C)	109.5
C(00) $C(00)$ $C(07)$	110 4(0)	C(AC) = C(AZ) = C(AQ)	101 0(0)
-------------------------------	----------	---------------------------	----------
C(23)-C(22)-C(27)	110.4(2)	C(46) - C(47) - C(48)	121.6(3)
C(23)-C(22)-B(1)	124.5(2)	C(46)-C(47)-H(47)	119.2
C(27)-C(22)-B(1)	119.1(2)	C(48)-C(47)-H(47)	119.2
C(24)-C(23)-C(22)	120.5(2)	C(49)-C(48)-C(47)	117.8(3)
C(24)-C(23)-C(28)	116.0(2)	C(49)-C(48)-C(51)	121.1(3)
C(22)-C(23)-C(28)	123.5(2)	C(47)-C(48)-C(51)	121.1(3)
C(25)-C(24)-C(23)	122 7(2)	C(48)-C(49)-C(50)	121 7(3)
C(25)- $C(24)$ - $H(24)$	118.6	C(48) - C(49) - H(49)	119.1
C(23) - C(24) - H(24)	119.6	C(50) - C(40) - H(40)	110.1
C(24) = C(24) = C(26)	117.0(2)	C(45) - C(49) - II(49)	110.1
C(24) - C(25) - C(26)	117.0(2)	O(45) - O(50) - O(49)	110.7(3)
C(24)-C(25)-C(29)	121.6(3)	C(45)-C(50)-H(50)	120.6
C(26)-C(25)-C(29)	121.3(3)	C(49)-C(50)-H(50)	120.6
C(27)-C(26)-C(25)	122.3(2)	C(48)-C(51)-H(51A)	109.5
C(27)-C(26)-H(26)	118.9	C(48)-C(51)-H(51B)	109.5
C(25)-C(26)-H(26)	118.9	H(51A)-C(51)-H(51B)	109.5
C(26)-C(27)-C(22)	121.0(2)	C(48)-C(51)-H(51C)	109.5
C(26)-C(27)-C(30)	116.5(2)	H(51A)-C(51)-H(51C)	109.5
C(22)-C(27)-C(30)	122.5(2)	H(51B)-C(51)-H(51C)	109.5
C(23)-C(28)-H(28A)	109.5	C(53)-C(52)-C(57)	116.5(2)
C(23)-C(28)-H(28B)	109.5	C(53)-C(52)-B(2)	124.2(2)
H(28A)-C(28)-H(28B)	109.5	C(57) - C(52) - B(2)	119 3(2)
C(23)-C(28)-H(28C)	109.5	C(54) - C(53) - C(52)	120 5(2)
H(28A) - C(28) - H(28C)	109.5	C(54)-C(53)-C(52)	116 2(2)
H(20R) - C(20) - H(20C)	109.5	C(54) - C(53) - C(50)	102(2)
$\Pi(20D) - U(20) - \Pi(20U)$	109.5	C(52)-C(53)-C(56)	123.3(2)
C(25)-C(29)-H(29A)	109.5	C(55)-C(54)-C(53)	122.7(3)
C(25)-C(29)-H(29B)	109.5	C(55)-C(54)-H(54)	118.7
H(29A)-C(29)-H(29B)	109.5	C(53)-C(54)-H(54)	118.7
C(25)-C(29)-H(29C)	109.5	C(54)-C(55)-C(56)	117.3(3)
H(29A)-C(29)-H(29C)	109.5	C(54)-C(55)-C(59)	121.3(3)
H(29B)-C(29)-H(29C)	109.5	C(56)-C(55)-C(59)	121.5(3)
C(27)-C(30)-H(30A)	109.5	C(55)-C(56)-C(57)	121.9(2)
C(27)-C(30)-H(30B)	109.5	C(55)-C(56)-H(56)	119.0
H(30A)-C(30)-H(30B)	109.5	C(57)-C(56)-H(56)	119.0
C(27)-C(30)-H(30C)	109.5	C(56)-C(57)-C(52)	121.0(2)
H(30A)-C(30)-H(30C)	109.5	C(56)-C(57)-C(60)	116.7(2)
H(30B)-C(30)-H(30C)	109.5	C(52)-C(57)-C(60)	122.4(2)
C(42)#2- $C(40)$ - $C(41)$	116.2(2)	C(53)-C(58)-H(58A)	109.5
C(42)#2- $C(40)$ - $B(2)$	130.5(2)	C(53)- $C(58)$ - $H(58B)$	109.5
C(41)-C(40)-B(2)	113.1(2)	H(58A)-C(58)-H(58B)	109.5
C(42)-C(41)-C(40)	124 4(2)	C(53)-C(58)-H(58C)	109.5
C(42)-C(41)-C(43)	126.9(2)	H(58A)-C(58)-H(58C)	109.5
C(40)- $C(41)$ - $C(43)$	108 6(2)	H(58B)-C(58)-H(58C)	100.0
C(40) #2 $C(42)$ $C(41)$	110 4(2)	C(55) - C(50) - H(500)	100.5
C(40)#2 C(42) - C(41)	120.2	C(55) - C(59) - H(59R)	109.5
$C(40) # 2 - C(42) - \Pi(42)$	120.3		109.5
G(41)-G(42)-H(42)	120.3		109.5
N(4)-C(43)-C(44)	106.4(2)	C(55)-C(59)-H(59C)	109.5
N(4)-C(43)-C(41)	110.9(2)	H(59A)-C(59)-H(59C)	109.5
C(44)- $C(43)$ - $C(41)$	142.7(2)	H(59B)-C(59)-H(59C)	109.5
N(6)-C(44)-C(43)	104.9(2)	C(57)-C(60)-H(60A)	109.5
N(6)-C(44)-H(44)	127.6	C(57)-C(60)-H(60B)	109.5
C(43)-C(44)-H(44)	127.6	H(60A)-C(60)-H(60B)	109.5
C(50)-C(45)-C(46)	122.2(3)	C(57)-C(60)-H(60C)	109.5
C(50)-C(45)-N(6)	118.5(2)	H(60A)-C(60)-H(60C)	109.5
C(46)-C(45)-N(6)	119.2(3)	H(60B)-C(60)-H(60C)	109.5
C(47)-C(46)-C(45)	117.9(3)	C(66)-C(61)-C(62)	116.4(3)
C(47)-C(46)-H(46)	121.0	C(66)-C(61)-B(2)	124.9(3)
C(45)-C(46)-H(46)	121.0	C(62)-C(61)-B(2)	118.2(2)
			()

C(63)-C(62)-C(61) C(63)-C(62)-C(67) C(61) C(62) C(67)	120.4(3) 115.9(3)
C(61)-C(62)-C(67) C(64)-C(63)-C(62)	123.7(2)
C(64)-C(63)-H(63)	118.6
C(62)-C(63)-H(63)	118.6
C(63)-C(64)-C(65)	117.1(3)
C(63)-C(64)-C(68)	121.2(4)
C(65)-C(64)-C(68)	121.7(4)
C(64)-C(65)-C(66)	122.4(3)
C(64)- $C(65)$ - $H(65)$	118.8
$C(00)-C(00)-\Pi(00)$	110.0
C(65)-C(66)-C(61)	120.0(3)
C(61)- $C(66)$ - $C(69)$	122 6(3)
C(62)-C(67)-H(67A)	109.5
C(62)-C(67)-H(67B)	109.5
H(67A)-C(67)-H(67B)	109.5
0C(62)-C(67)-H(67C)	109.5
H(67A)-C(67)-H(67C)	109.5
H(67B)-C(67)-H(67C)	109.5
C(64)-C(68)-H(68A)	109.5
C(64)-C(68)-H(68B)	109.5
H(68A)-C(68)-H(68B)	109.5
C(64)-C(68)-H(68C)	109.5
H(68A)-G(68)-H(68G)	109.5
$\Pi(00D) - U(00) - \Pi(00U)$	109.5
C(66)-C(69)-H(69R)	109.5
H(69A)-C(69)-H(69B)	109.5
C(66)-C(69)-H(69C)	109.5
H(69A)-C(69)-H(69C)	109.5
H(69B)-C(69)-H(69C)	109.5

C(22)-B(1)-C(13)	116.4(2)
C(22)-B(1)-C(1)	121.6(2)
C(13)-B(1)-C(1)	104.25(19)
C(22)-B(1)-N(1)	102.47(18)
C(13)-B(1)-N(1)	117.1(2)
C(1)-B(1)-N(1)	93.44(18)
C(61)-B(2)-C(52)	115.4(2)
C(61)-B(2)-C(40)	105.3(2)
C(52)-B(2)-C(40)	121.7(2)
C(61)-B(2)-N(4)	117.2(2)
C(52)-B(2)-N(4)	102.4(2)
C(40)-B(2)-N(4)	93.48(19)
N(2)-N(1)-C(4)	111.9(2)
N(2)-N(1)-B(1)	134.43(19)
C(4)-N(1)-B(1)	113.04(19)
N(1)-N(2)-N(3)	104.42(19)
N(2)-N(3)-C(5)	112.3(2)
N(2)-N(3)-C(6)	121.0(2)
C(5)-N(3)-C(6)	126.7(2)
N(5)-N(4)-C(43)	112.0(2)
N(5)-N(4)-B(2)	133.9(2)
C(43)-N(4)-B(2)	113.3(2)
N(4)-N(5)-N(6)	104.35(19)
N(5)-N(6)-C(44)	112.4(2)
N(5)-N(6)-C(45)	119.5(2)
C(44)-N(6)-C(45)	128.0(2)
Cl(1)-C(31)-Cl(2)	115.0(8)
Cl(1)-C(31)-H(31A)	108.5
Cl(2)-C(31)-H(31A)	108.5
Cl(1)-C(31)-H(31B)	108.5
CI(2)-C(31)-H(31B)	108.5
H(31A)-C(31)-H(31B)	107.5

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+1; #2 -x+1,-y,-z+1

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
$\overline{C(1)}$	35(1)	30(1)	29(1)	-9(1)	-6(1)	-2(1)	
C(2)	36(1)	28(1)	30(1)	-8(1)	-8(1)	-1(1)	
C(3)	38(1)́	30(1)́	30(1)	-10(1)	-7(1)́	1(1)	
C(4)	42(1)	30(1)	28(1)	-8(1)	-7(1)	0(1)	
C(5)	52(2)	29(1)	29(1)	-8(1)	-5(1)	2(1)	
C(6)	47(2)	27(1)	35(1)	-/(1)	-6(1) 0(1)	3(1)	
C(7)	72(2)	39(2)	41(2) 45(2)	-3(1)	13(2)	8(1)	
C(9)	59(2)	33(1)	51(2)	-5(1)	-1(1)	8(1)	
C(10)	52(2)́	36(1)	55(2)	-10(1)	5(Ì)	6(1)	
C(11)	51(2)	32(1)	41(1)	-8(1)	5(1)	0(1)	
C(12)	77(2)	39(2)	70(2)	2(2)	10(2)	15(2)	
C(13)	37(1)	36(1)	28(1)	-7(1) -9(1)	-/(l) -8(1)	U(1) 7(1)	
C(14) C(15)	40(1)	57(2)	41(2)	-15(1)	-8(1)	16(1)	
C(16)	37(2)	77(2)	44(2)	-14(2)	-8(1)	7(1)	
C(17)	38(2)	67(2)	43(2)	-10(1)́	-9(1)́	-8(1)	
C(18)	40(1)	50(2)	36(1)	-9(1)	-9(1)	-4(1)	
C(19)	51(2)	34(1)	44(2)	-15(1)	-9(1)	9(1)	
C(20)	41(2) 50(2)	120(4) 56(2)	71(2)	-30(2)	-7(2)	14(2)	
C(27)	33(1)	26(1)	29(1)	-23(2)	-5(1)	3(1)	
C(23)	36(1)	31(1)	33(1)	-10(1)	-3(1)	2(1)	
C(24)	34(1)	34(1)	40(1)	-12(1)	-2(1)	-1(1)	
C(25)	40(1)	33(1)	43(1)	-17(1)	-11(1)	3(1)	
C(26)	42(1)	33(1)	33(1)	-13(1)	-9(1) 5(1)	5(1)	
C(27)	37(1) 43(2)	20(1) 47(2)	33(1)	-9(1) -11(1)	-3(1) 1(1)	-13(1)	
C(29)	-0(2) 50(2)	51(2)	53(2)	-18(1)	-18(1)	-4(1)	
C(30)	41(1)	37(1)	29(1)	-7(1)	-5(1)	1(1)	
C(40)	36(1)	31(1)	38(1)	-12(1)	-8(1)	1(1)	
C(41)	38(1)	29(1)	37(1)	-10(1)	-7(1)	-2(1)	
C(42)	40(1)	30(1)	36(1)	-13(1)	-6(1)	1(1)	
C(43) C(44)	44(1) 55(2)	27(1)	37(1)	-11(1)	-9(1) -7(1)	1(1)	
C(45)	57(2)	31(1)	33(1)	-7(1)	-9(1)	-1(1)	
C(46)	88(3)	38(2)	46(2)	-11(1́)	-1(2)	8(2)	
C(47)	103(3)	34(2)	48(2)	-6(1)	-5(2)	8(2)	
C(48)	76(2)	42(2)	36(1)	-7(1)	-10(1)	-10(1)	
C(49) C(50)	60(2) 59(2)	48(2) 37(1)	46(2) 45(2)	-9(1) -5(1)	1(1) -4(1)	∠(1) 7(1)	
C(51)	103(3)	51(2)	42(2)	-6(1)	-5(2)	-15(2)	
C(52)	35(1)	30(1)	33(1)	-11(1)	-1(1)	-1(1)	
C(53)	38(1)	34(1)	37(1)	-15(1)	-4(1)	1(1)	
C(54)	39(1)	42(1)	42(1)	-15(1)	-11(1)	5(1)	
C(55)	41(1) 42(1)	43(2)	47(2)	-19(1)	-8(1)	-3(1)	
C(50)	$\frac{42(1)}{36(1)}$	32(1)	44(1) 34(1)	-13(1)	-4(1) -1(1)	-0(1)	
C(58)	50(2)	37(1)	58(2)	-19(1)	-22(1)	9(1)	
C(59)	65(2)	53(2)	82(2)	-26(2)	-32(2)	-2(2)	
C(60)	44(1)	28(1)	41(1)	-11(1)	-6(1)	-1(1)	

Table S8. Anisotropic displacement parameters (Å²x 10³) for Trz-Me. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}$ [$h^{2}a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}$]

C(61)	38(1)	26(1)	49(2)	-12(1)	-10(1)	-3(1)	
C(62)	40(1)	27(1)	53(2)	-12(1)	1(1)	-6(1)	
C(63)	45(2)	37(2)	67(2)	-14(1)	8(1)	-4(1)	
C(64)	39(2)	38(2)	87(3)	-7(2)	2(2)	-2(1)	
C(65)	40(2)	40(2)	84(2)	-5(2)	-19(2)	-2(1)	
C(66)	44(2)	35(1)	64(2)	-13(1)	-17(1)	-3(1)	
C(67)	49(2)	41(2)	44(2)	-17(1)	5(1)	-8(1)	
C(68)	43(2)	72(3)	128(4)	-7(3)	5(2)	5(2)	
C(69)	61(2)	96(3)	75(2)	-39(2)	-39(2)	16(2)	
B(1)	37(1)	26(1)	28(1)	-7(1)	-7(1)	0(1)	
B(2)	39(2)	29(1)	35(1)	-10(1)	-7(1)	1(1)	
N(1)	39(1)	28(1)	28(1)	-7(1)	-7(1)	0(1)	
N(2)	44(1)	26(1)	31(1)	-7(1)	-6(1)	3(1)	
N(3)	46(1)	26(1)	30(1)	-7(1)	-4(1)	2(1)	
N(4)	43(1)	27(1)	36(1)	-10(1)	-8(1)	0(1)	
N(5)	50(1)	29(1)	35(1)	-9(1)	-7(1)	-1(1)	
N(6)	52(1)	30(1)	33(1)	-9(1)	-6(1)	1(1)	
C(31)	107(8)	73(6)	192(13)	-27(7)	-76(9)	-5(6)	
CI(1)	185(4)	114(2)	130(3)	-45(2)	-90(3)	60(2)	
CI(2)	179(5)	191(5)	212(5)	7(4)	-50(4)	-80(4)	

H(3)94411222573139H(5)88073005413245H(7)9808452492564H(10)70195748246962H(11)75424131321153H(12)805076101075108H(12E)70507211973108H(12E)7055739880108H(12E)7055739880108H(15)12556-1245173260H(17)133351415165361H(19A)10336-1010168064H(19D)10221-1310286664H(19C)11039-1837227264H(20A)14448197730118H(20B)14235-9241457118H(20C)14544-1181880118H(21A)123052569171089H(21A)123052569171089H(21A)112272569171089H(21A)112272569171089H(24)7128-912275144H(26)86016766543H(28A)7458-933419163H(28A)7458-933419163H(28A)6518-879133075H(28B)8146-102421763H(28A)6518-879		Х	у	Z	U(eq)	
H(5)88073005413245H(7)9608452492564H(7)9608452492564H(10)70195748246962H(11)75424131321153H(12A)805076101075108H(12B)70507211973108H(12C)7965739880108H(15)12556-1245173260H(17)133351415165361H(194)10336-1010168064H(195)10221-1310286664H(190)10221-1310286664H(200)14544-1181880118H(200)14544-1181880118H(201)14225-9241457118H(202)14544-1181880118H(214)123052574192589H(214)7128-912275144H(216)114242445283389H(210)112272569171089H(214)7128-912275144H(260)660623054575H(260)8592-1161421163H(284)7458-933419163H(284)7458-93930275H(286)66106729163142H(291)6518<		9441	1222	5731	39	
H(7)9808452492564H(8)9286616121073H(10)70195748246962H(11)75424131321153H(128)70507211973108H(128)70507211973108H(127)133351415165361H(17)133351415165361H(198)10021-1310286664H(199)10221-1310286664H(190)14235-9241457118H(200)14235-9241457118H(210)1139-1227264H(211)123052574192589H(2128)114242145283389H(214)1228-912275144H(226)86016766543H(280)8146-102421763H(280)8146-102421763H(280)7278-63930275H(290)660623054575H(290)660623054575H(300)10170185177855H(304)1063692846055H(304)1063692846055H(304)1063692846055H(304)10170185177855H(49)87203230-800	H(5)	8807	3005	4132	45	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(7)	9808	4524	925	64	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(8)	9286	6161	210	73	
H(11)75424131321153H(12A)805076101075108H(12B)70507211973108H(12C)7965739880108H(15)12556-1245173260H(17)133351415165361H(19A)10336-1010168064H(19C)11039-1837227264H(20A)14448197730118H(20B)14235-9241457118H(20C)14544-1181880118H(21A)123052574192589H(21A)12272569171089H(21A)112272569171089H(24)7128-912275144H(28b)8146-102421763H(28b)8146-102421763H(28b)8146-102421763H(28b)8146-10245575H(29C)660623054575H(29B)7278-63930275H(29C)666623054575H(30C)98701648-14755H(42)5622-531363142H(44)66301239196948H(44)66301239196948H(44)66301239196948H(44)66301239<	H(10)	7019	5748	2469	62	
H(12A)B050T6101075108H(12B)70507211973108H(12C)7965739880108H(15)12556-1245173260H(17)133351415165361H(19A)10336-1010168064H(19B)10221-1310286664H(19C)11039-1837227264H(20A)14448197730118H(20B)14235-9241457118H(21A)123052574192589H(21B)114242145283389H(21C)112272569171089H(24)7128-912275144H(26A)86016766543H(28A)7458-933419163H(28B)8146-102421763H(28B)8146-102421763H(28B)8146-102421763H(29A)6518-879133075H(29B)7278-63930275H(30C)98701648-14755H(30C)98701648-14755H(30C)98701648-14755H(30C)98701648-14755H(42)5622-531363142H(44)66301239196948H(44)66470 <t< td=""><td>H(11)</td><td>7542</td><td>4131</td><td>3211</td><td>53</td><td></td></t<>	H(11)	7542	4131	3211	53	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(12A)	8050	7610	1075	108	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(12B)	7050	7211	973	108	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(12C)	7965	7398	80	108	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(15)	12556	-1245	1732	60	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(17)	13335	1415	1653	61	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(19A)	10336	-1010	1680	64	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(19B)	10221	-1310	2866	64	
H(20A)14448197730118H(20B)14235-9241457118H(20C)14544-1181880118H(21A)123052574192589H(21B)114242145283389H(21C)112272569171089H(24)7128-912275144H(26)86016766543H(28A)7458-933419163H(28B)8146-102421763H(29A)6518-879133075H(29A)6518-879133075H(29A)656892846055H(29B)7278-63930275H(29C)660623054575H(30A)1063692846055H(30B)10170185177855H(42)5622-531363142H(44)66301239196948H(46)6170454198472H(47)69435518-55978H(49)87203230-80066H(50)79345226-2365103H(51A)86065729-1893103H(51B)86065729-1893103H(51A)7537723598369H(58A)7537723598369H(58B)6969821 <t< td=""><td>H(19C)</td><td>11039</td><td>-1837</td><td>2272</td><td>64</td><td></td></t<>	H(19C)	11039	-1837	2272	64	
H(20B)14235 -924 1457118H(20C)14544-1181880118H(21A)123052574192589H(21B)114242145283389H(21C)112272569171089H(24)7128-912275144H(26)86016766543H(28A)7458-933419163H(28A)7458-933419163H(28B)8146-102421763H(29A)6518-879133075H(29B)7278-63930275H(29C)660623054575H(30A)1063692846055H(30B)10170185177855H(30C)98701648-14755H(42)5622-531363142H(44)66301239196948H(44)66301239196948H(44)66301239196948H(44)66301239196948H(44)66301239196948H(44)66301239196948H(44)66301239196948H(44)66301239196948H(45)7974224980061H(51A)89674741-2138103H(51A)79345226 <td< td=""><td>H(20A)</td><td>14448</td><td>197</td><td>730</td><td>118</td><td></td></td<>	H(20A)	14448	197	730	118	
H(20C)14544-1181880118H(21A)123052574192589H(21B)114242145283389H(21C)112272569171089H(24)7128-912275144H(26)86016766543H(28A)7458-933419163H(28B)8146-102421763H(28C)8592-1161421163H(29A)6518-879130075H(29C)660623054575H(29C)660623054575H(30A)1063692846055H(30C)98701648-14755H(42)5622-531363142H(44)66301239196948H(44)66301239196948H(44)66301239196948H(47)69435518-59978H(49)87203230-80066H(50)7974224980061H(51A)89674741-2138103H(51B)86065729-1893103H(51B)86065729-1893103H(51A)7537723598369H(58A)7537723598369H(58A)7537723598369H(58A)7537723	H(20B)	14235	-924	1457	118	
H(21A)123052574192589H(21B)114242145283389H(21C)112272569171089H(24)7128-912275144H(26)86016766543H(28A)7458-933419163H(28B)8146-102421763H(29A)6518-879133075H(29B)7278-63930275H(29C)660623054575H(30A)1063692846055H(30B)10170185177855H(30C)98701648-14755H(42)5622-531363142H(44)66301239196948H(44)66301239196948H(47)69435518-59978H(47)69435518-59978H(47)69435518-59978H(47)89674741-2138103H(51A)89674741-2138103H(51B)86065729-1893103H(51A)7537723598369H(58A)7537723598369H(58B)6969821509569H(58B)6969821509569H(58B)6969821509569H(58B)6969821509	H(20C)	14544	-118	1880	118	
H(21B)114242145283389H(21C)112272569171089H(24)7128-912275144H(26)86016766543H(28A)7458-933419163H(28B)8146-102421763H(29C)8592-1161421163H(29B)7278-63930275H(29B)7278-63930275H(29C)660623054575H(30A)1063692846055H(30B)10170185177855H(30C)98701648-14755H(42)5622-531363142H(44)66301239196948H(46)6170454198472H(47)69435518-59978H(49)87203230-80066H(50)7974224980061H(51A)89674741-2138103H(51B)86065729-1893103H(51C)79345226-2365103H(54)7537723598369H(58B)6969821509569H(58B)6969821509569H(58B)6378611620769H(58C)6378611620769H(59A)807935616880<	H(21A)	12305	2574	1925	89	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(21B)	11424	2145	2833	89	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(21C)	11227	2569	1710	89	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(24)	7128	-912	2751	44	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(26)	8601	676	65	43	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(28A)	7458	-933	4191	63	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(28B)	8146	-102	4217	63	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(28C)	8592	-1161	4211	63	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(29A)	6518	-879	1330	75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(29B)	7278	-639	302	75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(29C)	6606	230	545	75	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(30A)	10636	928	460	55	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(30B)	10170	1851	778	55	
H(42)5622-531363142 $H(44)$ 66301239196948 $H(46)$ 6170454198472 $H(47)$ 69435518-59978 $H(49)$ 87203230-80066 $H(50)$ 7974224980061 $H(51A)$ 89674741-2138103 $H(51B)$ 86065729-1893103 $H(51C)$ 79345226-2365103 $H(54)$ 79142076625149 $H(56)$ 68184796501047 $H(58A)$ 7537723598369 $H(58C)$ 6378611620769 $H(59A)$ 80793561688095 $H(59C)$ 88093889583095 $H(60A)$ 48454391451557 $H(60B)$ 55114274353257 $H(60B)$ 55114249355257	H(30C)	9870	1648	-147	55	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(42)	5622	-531	3631	42	
H(46) 6170 4541 984 72 $H(47)$ 6943 5518 -599 78 $H(49)$ 8720 3230 -800 66 $H(50)$ 7974 2249 800 61 $H(51A)$ 8967 4741 -2138 103 $H(51B)$ 8606 5729 -1893 103 $H(51C)$ 7934 5226 -2365 103 $H(54)$ 7914 2076 6251 49 $H(56)$ 6818 4796 5010 47 $H(58A)$ 7537 723 5983 69 $H(58C)$ 6378 611 6207 69 $H(58B)$ 6969 821 5095 69 $H(59A)$ 8079 3561 6880 95 $H(59C)$ 8809 3889 5830 95 $H(60A)$ 4845 4391 4515 57 $H(60B)$ 5511 4274 3532 57	H(44)	6630	1239	1969	48	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(46)	6170	4541	984	72	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(47)	6943	5518	-599	78	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(49)	8720	3230	-800	66	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(50)	7974	2249	800	61	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(51A)	8967	4741	-2138	103	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(51B)	8606	5729	-1893	103	
H(54)79142076625149 $H(56)$ 68184796501047 $H(58)$ 7537723598369 $H(58B)$ 6969821509569 $H(58C)$ 6378611620769 $H(59A)$ 80793561688095 $H(59B)$ 79644633606695 $H(59C)$ 88093889583095 $H(60A)$ 48454391451557 $H(60B)$ 55114274353257	H(51C)	7934	5226	-2365	103	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(54)	7914	2076	6251	49	
H(58A) 7537 723 5983 69 H(58B) 6969 821 5095 69 H(58C) 6378 611 6207 69 H(59A) 8079 3561 6880 95 H(59B) 7964 4633 6066 95 H(59C) 8809 3889 5830 95 H(60A) 4845 4391 4515 57 H(60B) 5511 4274 3532 57	H(56)	6818	4796	5010	47	
H(58F) 6969 821 5095 69 H(58C) 6378 611 6207 69 H(59A) 8079 3561 6880 95 H(59B) 7964 4633 6066 95 H(59C) 8809 3889 5830 95 H(60A) 4845 4391 4515 57 H(60B) 5511 4274 3532 57	H(58A)	7537	723	5983	69	
H(58C) 6378 611 6207 69 H(59A) 8079 3561 6880 95 H(59B) 7964 4633 6066 95 H(59C) 8809 3889 5830 95 H(60A) 4845 4391 4515 57 H(60B) 5511 4274 3532 57	H(58B)	6969	821	5095	69	
H(59A) 8079 3561 6880 95 H(59B) 7964 4633 6066 95 H(59C) 8809 3889 5830 95 H(60A) 4845 4391 4515 57 H(60B) 5511 4274 3532 57	H(58C)	6378	611	6207	69	
H(59B) 7964 4633 6066 95 H(59C) 8809 3889 5830 95 H(60A) 4845 4391 4515 57 H(60B) 5511 4274 3532 57	H(59A)	8079	3561	6880	95	
H(59C) 8809 3889 5830 95 H(60A) 4845 4391 4515 57 H(60B) 5511 4274 3532 57 H(60C) 5755 510 57	H(59B)	7964	4633	6066	95	
H(60A) 4845 4391 4515 57 H(60B) 5511 4274 3532 57 H(60C) 5755 57 57	H(59C)	8809	3889	5830	95	
H(60B) 5511 4274 3532 57	H(60A)	4845	4391	4515	57	
	H(60B)	5511	4274	3532	57	
H(60C) 5755 5108 3952 57	H(60C)	5755	5108	3952	57	

Table S9. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for Trz-Me.

H(63) H(65) H(67A) H(67B) H(67C) H(68A) H(68B) H(68B) H(68C) H(69A) H(69B)	2631 2121 4841 4834 3997 884 782 1125 3211 4000	3029 3361 3061 1906 2358 3000 3516 4155 3065 2214	6703 3988 6477 6606 7255 6349 5202 5792 2789 3145	64 69 68 68 136 136 136 136 108 108	
H(69A)	3211	3065	2789	108	
H(69B)	4000	2214	3145	108	
H(69C)	4306	3359	2741	108	
H(31A)	3995	7294	1777	146	
H(31B)	3482	6803	1163	146	

4.2. B₂-H

Table S10. Crystal data and structure refinement for B₂-H.

Empirical formula	$C_{46}H_{48}B_2$
Formula weight	622.46
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal System	Triclinic
Space group	P-1
Unit cell dimensions	a = 6.9356(5) Å α= 69.417(8)°
	b = 11.2669(9) Å β= 88.074(7)°
	c = 12.5929(13) Å γ = 78.462(6)°
Volume	901.89(14) Å ³
Z	1
Density (calculated)	1.146 Mg/m ³
Absorption coefficient	0.063 mm ⁻¹
F(000)	334
Crystal colour and habit	Colorless prism
Crystal size	0.173 x 0.090 x 0.089 mm ³
Theta range for data collection	3.000 to 29.237°
Index ranges	-8 ≤ h ≤ 8, -15 ≤ k ≤ 13, -16 ≤ l ≤ 15
Reflections collected	8238
Independent reflections	4241 [R(int) = 0.0246]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.91812
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4241 / 0 / 223
Goodness-of-fit on F ²	1.031
Final R indices [I>2sigma(I)]	R1 = 0.0509, wR2 = 0.1188
R indices (all data)	R1 = 0.0667, wR2 = 0.1307
Extinction coefficient	n/a
Largest diff. peak and hole	0.247 and -0.223 e.Å⁻³

Definitions:

$$R_{1} = \frac{\sum \left\|F_{o}\right| - \left|F_{c}\right\|}{\sum \left|F_{o}\right|} \qquad wR_{2} = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)^{2}\right]}{\sum \left[w\left(F_{o}^{2}\right)^{2}\right]}} \quad GooF = \sqrt{\frac{\sum \left[w\left(F_{o}^{2} - F_{c}^{2}\right)\right]}{(n-p)}}$$

n = number of reflections; p = number of parameters

Notes on the refinement of B₂-H.

All hydrogen atoms were placed in calculated positions and refined by using a riding model.

	х	У	Z	U(Eq)
C(1)	1433(2)	2998(1)	5546(1)	29(1)
C(2)	2478(2)	2157(1)	5317(1)	22(1)
C(3)	3760(2)	1087(1)	5118(1)	20(1)
C(4)	4376(2)	1147(1)	4022(1)	21(1)
C(5)	5603(2)	38(1)	3943(1)	21(1)
C(6)	3564(2)	3785(1)	2874(1)	20(1)
C(7)	4973(2)	4149(1)	3417(1)	23(1)
C(8)	4726(2)	5420(1)	3392(1)	26(1)
C(9)	3103(2)	6355(1)	2854(1)	26(1)
C(10)	1724(2)	6002(1)	2316(1)	26(1)
C(11)	1923(2)	4755(1)	2297(1)	22(1)
C(12)	6818(2)	3216(2)	4010(1)	33(1)
C(13)	2847(3)	7723(2)	2834(2)	36(1)
C(14)	346(2)	4502(2)	1661(1)	33(1)
C(15)	3509(2)	2062(1)	1786(1)	20(1)
C(16)	4649(2)	2510(1)	829(1)	23(1)
C(17)	4361(2)	2233(1)	-141(1)	26(1)
C(18)	2968(2)	1534(1)	-212(1)	27(1)
C(19)	1828(2)	1115(1)	724(1)	26(1)
C(20)	2092(2)	1350(1)	1718(1)	23(1)
C(21)	6240(2)	3249(2)	842(1)	32(1)
C(22)	2744(3)	1203(2)	-1259(1)	36(1)
C(23)	791(2)	858(2)	2699(1)	30(1)
B(1)	3793(2)	2362(2)	2894(1)	20(1)

Table S11. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for B₂-H. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.186(2)	C(9)-C(8)-C(7)	121.80(14)	_
C(1)-H(1)	0.9500	C(9)-C(8)-H(8)	119.1	
C(2)-C(3)	1.4409(19)	C(7)-C(8)-H(8)	119.1	
C(3)-C(5)#1	1.4000(18)	C(8)-C(9)-C(10)	117.84(13)	
C(3)-C(4)	1.4136(19)	C(8)-C(9)-C(13)	121.44(15)	
C(4)-C(5)	1.3964(18)	C(10)-C(9)-C(13)	120.71(14)	
C(4)-B(1)	1.5819(19)	C(9)-C(10)-C(11)	122.55(13)	
C(5)-C(3)#1	1.3999(18)	C(9)-C(10)-H(10)	118.7	
C(5)-H(5)	0.9500	C(11)-C(10)-H(10)	118.7	
C(6)-C(7)	1.411(2)	C(10)-C(11)-C(6)	119.60(14)	
C(6)-C(11)	1.4205(19)	C(10)-C(11)-C(14)	117.40(13)	
C(6)-B(1)	1.571(2)	C(6)-C(11)-C(14)	123.00(12)	
C(7)-C(8)	1.397(2)	C(7)-C(12)-H(12A)	109.5	
C(7)-C(12)	1.508(2)	C(7)-C(12)-H(12B)	109.5	
C(8)-C(9)	1.382(2)	H(12A)-C(12)-H(12B)	109.5	
C(8)-H(8)	0.9500	C(7)-C(12)-H(12C)	109.5	
C(9)-C(10)	1.385(2)	H(12A)-C(12)-H(12C)	109.5	
C(9)-C(13)	1.507(2)	H(12B)-C(12)-H(12C)	109.5	
C(10)-C(11)	1.3921(19)	C(9)-C(13)-H(13A)	109.5	
C(10)-H(10)	0.9500	C(9)-C(13)-H(13B)	109.5	
C(11)-C(14)	1.504(2)	H(13A)-C(13)-H(13B)	109.5	
C(12)-H(12A)	0.9800	C(9)-C(13)-H(13C)	109.5	
C(12)-H(12B)	0.9800	H(13A)-C(13)-H(13C)	109.5	
C(12)-H(12C)	0.9800	H(13B)-C(13)-H(13C)	109.5	
C(13)-H(13A)	0.9800	C(11)-C(14)-H(14A)	109.5	
C(13)-H(13B)	0.9800	C(11)-C(14)-H(14B)	109.5	
C(13)-H(13C)	0.9800	H(14A)-C(14)-H(14B)	109.5	
C(14)-H(14A)	0.9800	C(11)-C(14)-H(14C)	109.5	
C(14)-H(14B)	0.9800	H(14A)-C(14)-H(14C)	109.5	
C(14)-H(14C)	0.9800	H(14B)-C(14)-H(14C)	109.5	
C(15)-C(20)	1.409(2)	C(20)-C(15)-C(16)	118.21(13)	
C(15)-C(16)	1.4139(19)	C(20)-C(15)-B(1)	120.69(12)	
C(15)-B(1)	1.574(2)	C(16)-C(15)-B(1)	121.10(13)	
C(16)-C(17)	1.393(2)	C(17)-C(16)-C(15)	119.81(14)	

Table S12. Bond lengths [Å] and angles [°] for B2-H.

C(16)-C(21)	1.513(2)	C(17)-C(16)-C(21)	118.56(13)
C(17)-C(18)	1.386(2)	C(15)-C(16)-C(21)	121.59(13)
C(17)-H(17)	0.9500	C(18)-C(17)-C(16)	122.18(14)
C(18)-C(19)	1.390(2)	C(18)-C(17)-H(17)	118.9
C(18)-C(22)	1.511(2)	C(16)-C(17)-H(17)	118.9
C(19)-C(20)	1.392(2)	C(17)-C(18)-C(19)	117.78(13)
C(19)-H(19)	0.9500	C(17)-C(18)-C(22)	121.00(14
C(20)-C(23)	1.514(2)	C(19)-C(18)-C(22)	121.20(15)
C(21)-H(21A)	0.9800	C(18)-C(19)-C(20)	121.90(14)
C(21)-H(21B)	0.9800	C(18)-C(19)-H(19)	119.1
C(21)-H(21C)	0.9800	C(20)-C(19)-H(19)	119.1
C(22)-H(22A)	0.9800	C(19)-C(20)-C(15)	120.10(13)
C(22)-H(22B)	0.9800	C(19)-C(20)-C(23)	118.55(14)
C(22)-H(22C)	0.9800	C(15)-C(20)-C(23)	121.32(13)
C(23)-H(23A)	0.9800	C(16)-C(21)-H(21A)	109.5
C(23)-H(23B)	0.9800	C(16)-C(21)-H(21B)	109.5
C(23)-H(23C)	0.9800	H(21A)-C(21)-H(21B)	109.5
		C(16)-C(21)-H(21C)	109.5
C(2)-C(1)-H(1)	180.0	H(21A)-C(21)-H(21C)	109.5
C(1)-C(2)-C(3)	176.28(15)	H(21B)-C(21)-H(21C)	109.5
C(5)#1-C(3)-C(4)	120.10(12)	C(18)-C(22)-H(22A)	109.5
C(5)#1-C(3)-C(2)	117.58(12)	C(18)-C(22)-H(22B)	109.5
C(4)-C(3)-C(2)	122.31(12)	H(22A)-C(22)-H(22B)	109.5
C(5)-C(4)-C(3)	116.60(12)	C(18)-C(22)-H(22C)	109.5
C(5)-C(4)-B(1)	118.15(12)	H(22A)-C(22)-H(22C)	109.5
C(3)-C(4)-B(1)	125.24(12)	H(22B)-C(22)-H(22C)	109.5
C(4)-C(5)-C(3)#1	123.29(12)	C(20)-C(23)-H(23A)	109.5
C(4)-C(5)-H(5)	118.4	C(20)-C(23)-H(23B)	109.5
C(3)#1-C(5)-H(5)	118.4	H(23A)-C(23)-H(23B)	109.5
C(7)-C(6)-C(11)	117.74(12)	C(20)-C(23)-H(23C)	109.5
C(7)-C(6)-B(1)	121.61(12)	H(23A)-C(23)-H(23C)	109.5
C(11)-C(6)-B(1)	120.64(13)	H(23B)-C(23)-H(23C)	109.5
C(8)-C(7)-C(6)	120.43(13)	C(6)-B(1)-C(15)	121.79(11)
C(8)-C(7)-C(12)	117.17(14)	C(6)-B(1)-C(4)	122.04(12)
C(6)-C(7)-C(12)	122.38(13)	C(15)-B(1)-C(4)	116.15(12)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	31(1)	27(1)	27(1)	-11(1)	3(1)	0(1)
C(2)	26(1)	20(1)	18(1)	-5(1)	0(1)	-3(1)
C(3)	22(1)	19(1)	20(1)	-8(1)	-1(1)	-2(1)
C(4)	24(1)	19(1)	19(1)	-7(1)	-1(1)	-3(1)
C(5)	26(1)	21(1)	16(1)	-7(1)	1(1)	-3(1)
C(6)	26(1)	18(1)	14(1)	-4(1)	1(1)	-4(1)
C(7)	25(1)	25(1)	18(1)	-7(1)	2(1)	-5(1)
C(8)	31(1)	30(1)	24(1)	-13(1)	2(1)	-12(1)
C(9)	36(1)	21(1)	23(1)	-10(1)	9(1)	-8(1)
C(10)	29(1)	20(1)	24(1)	-6(1)	2(1)	0(1)
C(11)	27(1)	19(1)	17(1)	-5(1)	0(1)	-2(1)
C(12)	29(1)	34(1)	34(1)	-11(1)	-7(1)	-5(1)
C(13)	50(1)	24(1)	40(1)	-16(1)	10(1)	-10(1)
C(14)	34(1)	25(1)	37(1)	-10(1)	-13(1)	2(1)
C(15)	25(1)	16(1)	18(1)	-5(1)	-2(1)	0(1)
C(16)	26(1)	20(1)	19(1)	-4(1)	-2(1)	-1(1)
C(17)	30(1)	28(1)	17(1)	-6(1)	2(1)	-2(1)
C(18)	30(1)	26(1)	22(1)	-10(1)	-6(1)	3(1)
C(19)	27(1)	23(1)	29(1)	-11(1)	-5(1)	-3(1)
C(20)	27(1)	18(1)	23(1)	-7(1)	-1(1)	-1(1)
C(21)	34(1)	37(1)	26(1)	-9(1)	4(1)	-14(1)
C(22)	40(1)	41(1)	28(1)	-18(1)	-7(1)	0(1)
C(23)	33(1)	28(1)	32(1)	-12(1)	5(1)	-9(1)
B(1)	18(1)	22(1)	20(1)	-7(1)	2(1)	-2(1)

Table S13. Anisotropic displacement parameters (Å²x 10³) for B₂-H. The anisotropic displacement factor exponent takes the form: -2 π^2 [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	У	Z	U(eq)
H(1)	597	3671	5728	35
H(5)	6026	48	3215	25
H(8)	5700	5647	3754	32
H(10)	599	6634	1946	31
H(12A)	7830	3701	4038	49
H(12B)	7297	2633	3594	49
H(12C)	6525	2709	4785	49
H(13A)	2694	8324	2046	55
H(13B)	4007	7814	3199	55
H(13C)	1672	7922	3244	55
H(14A)	-729	5264	1417	49
H(14B)	-163	3753	2158	49
H(14C)	901	4323	994	49
H(17)	5146	2532	-775	32
H(19)	841	655	684	31
H(21A)	6818	3510	95	48
H(21B)	7266	2695	1418	48
H(21C)	5667	4021	1023	48
H(22A)	2859	1949	-1938	53
H(22B)	1450	985	-1277	53
H(22C)	3777	461	-1240	53
H(23A)	-310	594	2434	45
H(23B)	279	1548	3000	45
H(23C)	1562	115	3298	45

Table S14. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for B²-H.

Figure S49. Crystal structure of 1,4-Diethynyl-2,5-bis(dimesitylboryl)benzene (B₂-H). Hydrogen atoms have been omitted for clarity

5. References

- ¹ H. C. Brown, V. H. Dodsun, J. Am. Chem. Soc. **1957**, 79, 2302.
- ² S. Zhou, H. Liao, M. Liu, G. Feng, B. Fu, R. Li, M. Cheng, Y. Zhao, P. Gong, *Bioorganic Med. Chem.* **2014**, *22*, 6438–6452.
- ³ J. R. Thomas, X. Liu, P. J. Hergenrother, J. Am. Chem. Soc. 2005, 127, 12434–12435.
- ⁴ W. L. F. Armarego, D. D. Perrin, *Purification of Laboratory Chemicals*, 4th Ed. Butterworth-Heinemann, Oxford, **1997**.
- ⁵ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176.
- ⁶ S. Berger, S. Braun, 200 and More NMR Experiments A Practical Course, Chapter 5, Wiley-VCH, 2004.
- ⁷ J. D. Tovar, T. M. Swager, J. Organomet. Chem. 2002, 653, 215–222.
- ⁸ Y. Wang, S. R. Parkin, M. D. Watson, Org. Lett. 2008, 10, 4421–4424.
- ⁹ C. Zhao, A. Wakamiya, Y. Inukai, S. Yamaguchi, J. Am. Chem. Soc. 2006, 128, 15934–15935
- ¹⁰ H. J. Reich, J. Chem. Educ.: Software, Ser. D, 1996, 3D.; WINDNMR: NMR Spectrum Calculations Version
- 7.1.14, 09/2009, by Hans J. Reich, Dept. of Chemistry, 1101 University Avenue, Madison Wisconsin 53711
- ¹¹ N. M. O'boyle, A. L. Tenderholt, K. M. Langner, *J. Comp. Chem.* **2008**, *29*, 839–845.