Supporting information

All-in-one Thermometer-Heater Up-converting Platform YF₃: Yb³⁺, Tm³⁺ Operating in the First Biological Window

Hao Suo^a, Fangfang Hu^b, Xiaoqi Zhao^a, Zhiyu Zhang^a, Ting Li^a, Changkui Duan^b, Min Yin^b, Chongfeng Guo^{a*}

a. National Key Laboratory of Photoelectric Technology and Functional Materials (Culture Base) in Shaanxi Province, National Photoelectric Technology and Functional Materials & Application of Science and Technology International Cooperation Base, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, China;

b. School of Physical Science, University of Science and Technology of China, Hefei, 230026, China;

*Author to whom correspondence should be addressed

E-mail: guocf@nwu.edu.cn (Prof. Guo);

Tel & Fax: ±86-29-88302661

Figure S1. Enlarged main peaks (111) in XRD patterns of YF₃: 0.5%Tm³⁺, *x*Yb³⁺ (*x* = 5%, 10%, 20%, 30% and 40%) micro-crystals.

Figure S2. SEM image of YF₃: 0.5%Tm³⁺, xYb³⁺ (x = 5%, 20%, 30% and 40%) micro-crystals (scale bar, 3 µm).

Figure S3. 980 nm excited UC emission spectra of YF₃: 0.5%Tm³⁺, *x*Yb³⁺ (*x* = 5~40%) microcrystals.

Figure S4. 980 nm excited thermal evolution of UC emission spectra of YF₃: 0.5%Tm³⁺, *x*Yb³⁺ (*x* = 5 and 40%) micro-crystals within the BW-I.

Figure S5. (a) XRD patterns of YF₃: 0.5%Tm³⁺/10%Yb³⁺ micro-crystals after heating treatment at different temperature from RT to 1073 K; (b) SEM and TEM of 873 K-heated samples. Scale bars, 1 μ m.

Fluorescence centers	Transitions	$\Delta E \text{ (cm}^{-1}\text{)}$	λ_{em} (nm)	ref	
Er ³⁺	${}^{2}\text{H}_{9/2}, {}^{4}\text{G}_{11/2} \rightarrow {}^{4}\text{I}_{15/2}$	~1530	384, 408	[1]	
	${}^{4}D_{7/2}, {}^{4}G_{9/2} \rightarrow {}^{4}I_{15/2}$	~265	256, 276	[2]	
	${}^{4}S_{3/2}, {}^{2}H_{11/2} {\longrightarrow} {}^{4}I_{15/2}$	~800	528, 548	[3]	
	${}^4\mathrm{F}_{9/2(1)}, {}^4\mathrm{F}_{9/2(2)} \longrightarrow {}^4\mathrm{I}_{15/2}$	~100	653, 674		
Ho ³⁺	${}^{5}G_{6}/{}^{5}F_{1}, {}^{5}F_{2,3}/{}^{3}K_{8} \rightarrow {}^{5}I_{8}$	~1500	460, 487	[4]	
	${}^{5}F_{4}, {}^{5}S_{2} \rightarrow {}^{5}I_{8}$	~180	538, 543	[5]	
	${}^{5}F_{5(1)}, {}^{5}F_{5(2)} \rightarrow {}^{5}I_{8}$	~60	650, 660	[6]	
Dy ³⁺	${}^{4}\mathrm{I}_{15/2},{}^{4}\mathrm{F}_{9/2} {\longrightarrow}{}^{6}\mathrm{H}_{15/2}$	~1000	455, 481	[7]	
Nd ³⁺	${}^{4}F_{7/2}, {}^{4}F_{3/2} \longrightarrow {}^{4}I_{9/2}$	~1895	755, 872		
	${}^{4}F_{5/2}, {}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$	~1005	805, 872	[8]	
	${}^{4}F_{7/2}, {}^{4}F_{5/2} \longrightarrow {}^{4}I_{9/2}$	~920	755, 805		
	${}^{4}F_{3/2(1)}, {}^{4}F_{3/2(2)} \rightarrow {}^{4}I_{9/2}$	~110	938, 947	[9]	
Gd^{3+}	${}^{6}\mathrm{P}_{5/2},{}^{6}\mathrm{P}_{7/2} \longrightarrow {}^{8}\mathrm{S}_{7/2}$	~460	307, 313	[10]	
	${}^{6}\mathrm{I}_{9/2},{}^{6}\mathrm{I}_{7/2} \longrightarrow {}^{8}\mathrm{S}_{7/2}$	~280	277, 280		
Sm ³⁺	${}^{4}F_{3/2}, {}^{4}G_{5/2} {\longrightarrow} {}^{6}H_{5/2}$	~1000	530, 570	[11]	
Eu ³⁺	${}^5D_1, {}^5D_0 \rightarrow {}^7F_1$	~1700	535, 590		
Tm ³⁺	${}^{1}G_{4(1)}, {}^{1}G_{4(2)} \rightarrow {}^{3}H_{6}$	~340	479, 484	[12]	
	${}^{3}F_{2,3}, {}^{3}H_{4} \rightarrow {}^{3}H_{6}$	~1700	700, 776	This work	

Table S1. Energy separations (ΔE) between TCLs of different fluorescence centers

Yb ³⁺ contents	<i>a</i> (Å)	b (Å)	c (Å)	volume (Å ³)
5%Yb ³⁺	6.356	6.869	4.444	194.022
10%Yb ³⁺	6.347	6.866	4.424	192.791
20%Yb ³⁺	6.346	6.859	4.415	192.172
30%Yb ³⁺	6.333	6.839	4.395	190.353
40%Yb ³⁺	6.236	6.752	4.364	183.749

Table S2. The lattice constants of YF_3 micro-crystals with different Yb^{3+} contents.

Reference

- [1] W. Xu, Z. G. Zhang and W. W. Cao, Opt. lett., 2012, 37, 4865-4867.
- [2] K. Z. Zheng, W. Y. Song, G. H. He, Z. Yuan and W. P. Qin, Opt. Express, 2015, 23, 7653-7658.
- [3] H. Suo, C. F. Guo and T. Li, J. Phys. Chem. C, 2016, 120, 2914-2924.
- [4] W. Xu, H. Zhao, Y. X. Li, L. J. Zheng, Z. G. Zhang, W. W. Cao, Sens. Actuators. B, 2013, 188, 1096-1100.
- [5] X. F. Wang, Q. Liu, Y. Y. Bu, C. S. Liu, T. Liu and X. H. Yan, RSC Adv., 2015, 5, 86219-86236.
- [6] O. A. Savchuk, J. J. Carvajal, M. C. Pujol, E. W. Barrera, J. Massons, M. Aguilo and F. Diaz, J. Phys. Chem. C, 2015, 119, 18546-18558.
- [7] Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski and M. Malinowski, *Opt. Lett.*, 2012, 37, 5214-5216.
- [8] W. Xu, Q. T. Song, L. J. Zheng, Z. J. Zhang and W. W. Cao, Opt. lett., 2014, 16, 4635-4638.
- [9] A. Benayas, B. del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata and
 F. Vetrone, *Adv. Opt. Mater.*, 2015, 3, 687-694.
- [10] K. Z. Zheng, Z. Y. Liu, C. J. Lv and W. P. Qin, J. Mater. Chem. C, 2013, 1, 5502-5507.
- [11] S. A. Wade, S. F. Collins and G. W. Baxter, J. Appl. Phys., 2003, 94, 4743-4756.
- [12] H. Suo, C. F. Guo, Z. Yang, S. S. Zhou, C. K. Duan and M. Yin, J. Mater. Chem. C., 2015, 3, 7379-7385.